Skip to main content
Log in

On the irreducibility of the hyperplane sections of Fermat varieties in \(\mathbb {P}^{3}\) in characteristic 2. II

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

Let t be an integer ≥ 3 such that t ≡ 1 mod 4. The absolute irreducibility of the polynomial \(\phi _{t}(x, y) = \frac {x^{t} + y^{t} + 1 + (x + y + 1)^{t}}{(x + y)(x + 1)(y + 1)}\) (over \(\mathbb {F}_{2}\)) plays an important role in the study of APN functions. We prove that this polynomial is absolutely irreducible under the assumptions that the largest odd integer which divides t − 1 is large enough and can not be written in a specific form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aubry, Y., McGuire, G., Rodier, F.: A few more functions that are not APN infinitely often Finite fields: Theory and applications, Contemporary Mathematics 518, pp. 23–31. American Mathematical Society, Providence, RI (2010)

    Chapter  Google Scholar 

  2. Berger, T., Canteaut, A., Charpin, P., Laigle-Chapuy, Y.: On almost perfect nonlinear functions over \(F^n_{2}\). IEEE Trans. Inf. Theory 52(9), 4160–4170 (2006)

    Article  MATH  Google Scholar 

  3. Bluher, A. W.: On existence of Budaghyan-Carlet APN hexanomials. Finite Fields Appl. 24, 118–123 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language, Computational algebra and number theory (London, 1993). J. Symb. Comput. 24(3–4), 235–265 (1997)

    Article  MATH  Google Scholar 

  5. Bracken, C., Byrne, E., Markin, N., McGuire, G.: New families of quadratic almost perfect nonlinear trinomials and multinomials. Finite Fields Appl. 14 (3), 703–714 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bracken, C., Tan, C. H., Tan, Y.: On a class of quadratic polynomials with no zeros and its application to APN functions. Finite Fields Appl. 25, 26–36 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Budaghyan, L., Carlet, C., Felke, P., Leander, G.: An infinite class of quadratic APN functions which are not equivalent to power mappings. In: Proceedings of the IEEE International Symposium on Information Theory, pp. 2637–2641 (2006)

  8. Byrne, E., McGuire, G.: On the non-existence of quadratic APN and crooked functions on finite fields. In: Proceedings of the Workshop on Coding and Cryptography, WCC, pp. 316–324 (2005)

  9. Caullery, F.: A new large class of functions not APN infinitely often. Des. Codes Cryptogr. 73(2), 601–614 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Caullery, F.: Polynomials over finite fields for cryptography. Ph.D. thesis, Université d’Aix-Marseille. http://www.theses.fr/2014AIXM4013 (2014)

  11. Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations suitable for DES-like cryptosystems. Des. Codes Cryptogr. 15(2), 125–156 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dillon, J.F.: APN Polynomials: An update. Invited talk at Fq9 the 9th International Conference on Finite Fields and their Applications (2009)

  13. Delgado, M., Janwa, H.: On the conjecture on APN functions. arXiv:1207.5528 [cs.IT]

  14. Edel, Y., Kyureghyan, G., Pott, A.: A new APN function which is not equivalent to a power mapping. IEEE Trans. Inform. Theory 52(2), 744–747 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Férard, E.: On the irreducibility of the hyperplane sections of Fermat varieties in \(\mathbb {P}^{3}\) in characteristic 2. Adv. Math. Commun. 8(4), 497–509 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Férard, E.: A infinite class of Kasami functions that are not APN infinitely often. Submitted to AGCT 15

  17. Férard, E., Oyono, R., Rodier, F.: Some more functions that are not APN infinitely often. The case of Gold and Kasami exponents Arithmetic, geometry, cryptography and coding theory, Contemporary Mathematics, 574, pp. 27–36. American Mathematical Society, Providence, RI (2012)

    Chapter  Google Scholar 

  18. Férard, E., Rodier, F.: Non linéarité des fonctions booléennes données par des polynômes de degré binaire 3 définies sur \(\mathbb {F}_2^{m}\) avec m pair [Nonlinearity of Boolean functions given by polynomials of binary degree 3 defined on \(\mathbb {F}_2^{m}\) with m even] Arithmetic, geometry, cryptography and coding theory 2009, Contemporary Mathematics, 521, pp. 41–53. American Mathematical Society, Providence, RI (2010)

    Chapter  Google Scholar 

  19. Férard, E., Rodier, F.: Non linéarité des fonctions booléennes données par des traces de polynômes de degré binaire 3 [Nonlinearity of Boolean functions given by traces of polynomials of binary degree 3]. Algebraic geometry and its applications, Series Number Theory Applications, 5, pp. 388–409. World Scientific Publications, Hackensack, NJ (2008)

  20. Hernando, F., McGuire, G.: Proof of a conjecture on the sequence of exceptional numbers, classifying cyclic codes and APN functions. J. Algebra 343, 78–92 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fulton, W.: Algebraic curves. Benjamin New York (1969)

  22. Janwa, H., Wilson, R.M.: Hyperplane sections of Fermat varieties in P 3 in char. 2 and some applications to cyclic codes. In: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Proceedings AAECC-10 (G. Cohen, T. Mora and O. Moreno Eds.), Lecture Notes in Computer Science, vol. 673, pp. 180194. Springer-Verlag, NewYork/Berlin (1993)

  23. Janwa, H., McGuire, G., Wilson, R.M.: Double-error-correcting cyclic codes and absolutely irreducible polynomials over GF(2). J. Algebra 178, 665–676 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jedlicka, D.: APN monomials over G F(2n) for infinitely many n. Finite Fields Appl. 13(4), 1006–1028 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lucas, E.: Théorie des fonctions numériques simplement périodiques. Amer. J. Math. 1, 197–240, 289–321 (1878)

    Article  MathSciNet  Google Scholar 

  26. Nyberg, K.: Differentially uniform mappings for cryptography Advances in cryptology—Eurocrypt ’93 (Lofthus, 1993), Lecture Notes in Computer Science, vol. 765, pp. 55–64. Springer, Berlin (1994)

    Google Scholar 

  27. Rodier, F.: Bornes sur le degré des polynômes presque parfaitement non-linéaires Arithmetic, Geometry, Cryptography and Coding Theory, Contemporary Mathematics 487, pp. 169–181. American Mathematical Society, Providence, RI (2009)

    Chapter  Google Scholar 

  28. Rodier, F.: Functions of degree 4e that are not APN infinitely often. Cryptogr. Commun. 3, 227–240 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Stein, W.A., et al.: Sage Mathematics Software (Version 4.8) The Sage Development Team. http://www.sagemath.org (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Férard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Férard, E. On the irreducibility of the hyperplane sections of Fermat varieties in \(\mathbb {P}^{3}\) in characteristic 2. II. Cryptogr. Commun. 9, 749–767 (2017). https://doi.org/10.1007/s12095-017-0213-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-017-0213-1

Keywords

Mathematics Subject Classification (2010)

Navigation