Skip to main content
Log in

Evolution of complexity in a resource-based model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Through a resource-based modelling the evolution of organismal complexity is studied. In the model, the cells are characterized by their metabolic rates which, together with the availability of resource, determine the rate at which they divide. The population is structured in groups. Groups are also autonomous entities regarding reproduction and propagation, and so they correspond to a higher biological organization level. The model assumes reproductive altruism as there exists a fitness transfer from the cell level to the group level. Reproductive altruism comes about by inflicting a higher energetic cost to cells belonging to larger groups. On the other hand, larger groups are less prone to extinction. The strength of this benefit arising from group augmentation can be tuned by the synergistic parameter \(\gamma\). Through extensive computer simulations we make a thorough exploration of the parameter space to find out the domain in which the formation of larger groups is allowed. We show that formation of small groups can be obtained for a low level of synergy. Larger group sizes can only be attained as synergistic interactions surpass a given level of strength. Although the total resource influx rate plays a key role in determining the number of groups coexisting at the equilibrium, its function on driving group size is minor. On the other hand, how the resource is seized by the groups matters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Smith, E. Szathmáry, The Major Transitions in Evolution (Oxford University Press, Oxford, 1997)

  2. J.T. Bonner, Integr. Biol. Issues News Rev. 1, 27 (1998)

    Article  Google Scholar 

  3. R.K. Grosberg, R.R. Strathmann, Annu. Rev. Ecol. Evol. Syst. 38, 621 (2007)

    Article  Google Scholar 

  4. R.E. Michod, Proc. Natl. Acad. Sci. 104, 8613 (2007)

    Article  ADS  Google Scholar 

  5. G. Bell, A.O. Mooers, Biol. J. Linn. Soc. 60, 345 (1997)

    Article  Google Scholar 

  6. J.T. Bonner, The Evolution of Complexity by Means of Natural Selection (Princeton University Press, 1988)

  7. J.T. Bonner, Evolution 58, 1883 (2004)

    Article  Google Scholar 

  8. M.T. Ghiselin, Am. Econ. Rev. 68, 233 (1978)

    Google Scholar 

  9. M.L. Rosenzweig, Species Diversity in Space and Time (Cambridge University Press, 1995)

  10. W.R. Turner, E. Tjorve, Ecography 28, 721 (2005)

    Article  Google Scholar 

  11. P.R. Campos, A. Rosas, V.M. de Oliveira, M.A. Gomes, PloS ONE 8, e66495 (2013)

    Article  ADS  Google Scholar 

  12. P.R. Campos, E.D. Neto, V.M.d. Oliveira, M. Gomes, Oikos 121, 1737 (2012)

    Article  Google Scholar 

  13. P.C. Donoghue, J.B. Antcliffe, Nature 466, 41 (2010)

    Article  ADS  Google Scholar 

  14. W.C. Ratcliff, R.F. Denison, M. Borrello, M. Travisano, Proc. Natl. Acad. Sci. U.S.A. 109, 1595 (2012)

    Article  ADS  Google Scholar 

  15. M.E. Boraas, D.B. Seale, J.E. Boxhorn, Evol. Ecol. 12, 153 (1998)

    Article  Google Scholar 

  16. L. Fernández, A. Amado, P.R.A. Campos, F.F. Ferreira, Phys. Rev. E 93, 052401 (2016)

    Article  ADS  Google Scholar 

  17. J.H. Koschwanez, K.R. Foster, A.W. Murray, PLoS Biol. 9, e1001122 (2011)

    Article  Google Scholar 

  18. A.Y. Weibe, D.A. Oyarzún, V. Danos, P.S. Swain, Proc. Natl. Acad. Sci. 112, E1038 (2015)

    Article  ADS  Google Scholar 

  19. C.A. Solari, S. Ganguly, J.O. Kessler, R.E. Michod, R.E. Goldstein, Proc. Natl. Acad. Sci. 103, 1353 (2006)

    Article  ADS  Google Scholar 

  20. A. Amado, L. Fernández, W. Huang, F.F. Ferreira, P. Campos, R. Soc. Open Sci. 3, 160544 (2016)

    Article  ADS  Google Scholar 

  21. S. Gavrilets, PLoS Comput. Biol. 6, e1000805 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  22. C.A. Solari, J.O. Kessler, R.E. Michod, Am. Nat. 167, 537 (2006)

    Google Scholar 

  23. C. Bianca, A. Lemarchand, J. Chem. Phys. 145, 154108 (2016)

    Article  ADS  Google Scholar 

  24. G. Bell, A.O. Mooers, Biol. J. Linn. Soc. 60, 345 (1997)

    Article  Google Scholar 

  25. C. Anderson, D.W. McShea, Biol. Rev. Cambridge Philos. Soc. 76, 211 (2001)

    Article  Google Scholar 

  26. H. Ferguson-Gow, S. Sumner, A.F. Bourke, K.E. Jones, Proc. R. Soc. B 281, 20141411 (2014)

    Article  Google Scholar 

  27. J.M. Carlson, J. Doyle, Proc. Natl. Acad. Sci. 99, 2538 (2002)

    Article  ADS  Google Scholar 

  28. H. Nozaki, K. Misawa, T. Kajita, M. Kato, S. Nohara, M.M. Watanabe, Mol. Phylogenet. Evol. 17, 256 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo R. A. Campos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández, L., Campos, P.R.A. Evolution of complexity in a resource-based model. Eur. Phys. J. Plus 132, 72 (2017). https://doi.org/10.1140/epjp/i2017-11347-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11347-6

Navigation