Skip to main content
Log in

Chromosomal rearrangements, genome reorganization, and speciation

  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Historical analysis of studying chromosome changes in evolution allows better understanding of the current level of research in this area. Reorganizations of the genetic system due to chromosomal rearrangements have important evolutionary consequences and may lead to speciation. Despite the complexity of evaluating the primacy of chromosome changes in speciation events, such phenomena are possible and occur in nature, as recent studies have demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arias, C.A., Van Belleghem, S., and McMillan, W.O., Genomics at the evolving species boundary, Curr. Opin. Insect Sci., 2016, vol. 13, pp. 7–15.

    Article  PubMed  Google Scholar 

  • Atlas of Mammalian Chromosomes, O’Brien, S.J., Menninger, J.C., and Nash, W.G., Eds., Wiley, 2006.

  • Ayala, F.J. and Coluzzi, M., Chromosome speciation: humans, drosophila, and mosquitoes, Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 102, pp. 6535–6542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baird, A.B., Hillis, D.M., Patton, J.C., and Bickham, J.W., Speciation by monobrachial centric fusions: a test of the model using nuclear DNA sequences from the bat genus Rhogeessa, Mol. Phylogenet. Evol., 2009, vol. 50, pp. 256–267.

    Article  CAS  PubMed  Google Scholar 

  • Baker, R.J., Bickham, J.W., and Arnold, M.L., Chromosomal evolution in Rhogeessa (Chiroptera, Vespertilionidae): possible speciation by centric fusions, Evolution, 1985, vol. 39, pp. 233–243.

    Article  Google Scholar 

  • Baker, R.J., Quimsiyeh, M.B., and Hood, C.S., Role of chromosomal banding patterns in understanding mammalian evolution, in Current Mammalogy, Genoways H.H., Ed., New York: Plenum Press, 1987, pp. 67–96.

    Chapter  Google Scholar 

  • Baker, R.J. and Bickham, J.W., Speciation by monobrachial centric fusions, Proc. Natl. Acad. Sci. U. S. A., 1986, vol. 83, pp. 8245–8248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakloushinskaya, I.Yu., Matveevsky, S.N., Romanenko, S.A., Serdukova, N.A., Kolomiets, O.L., et al., A comparative analysis of the mole vole sibling species Ellobius tancrei and E. talpinus (Cricetidae, Rodentia) through chromosome painting and examination of synaptonemal complex structures in hybrids, Cytogenet. Genome Res., 2012, vol. 136, pp. 199–207.

    Article  PubMed  Google Scholar 

  • Baklushinskaya, I.Yu., Romanenko, S.A., Grafodatskii, A.S., Matveevskii, S.N., Lyapunova, E.A., and Kolomiets, O.L., The role of chromosome rearrangements in the evolution of mole voles of the genus Ellobius (Rodentia, Mammalia), Russ. J. Genet., 2010, vol. 46, no. 9, pp. 1143–1145.

    Article  CAS  Google Scholar 

  • Bateman, A.J., Is the gene dispersion normal?, Heredity, 1950, vol. 4, pp. 353–363.

    Article  CAS  PubMed  Google Scholar 

  • Bateson, W., Mendel’s Principle of Heredity, a Defense, Cambridge, 1902.

    Google Scholar 

  • Baudat, F., Imai, Y., and de Massy, B., Meiotic recombination in mammals: localization and regulation, Nature Rev. Genet., 2013, vol. 14, pp. 794–806.

    Article  CAS  PubMed  Google Scholar 

  • Baverstock, P.R., Watts, C.H.S., Gelder, M., and Jahnke, A., G-banding homologies of some Australian rodents, Genetics, 1983, vol. 60, pp. 105–117.

    Google Scholar 

  • Bazykin, A.D., The effect of disruptive selection on a spatially extended population. I. Equal fitness of homozygotes. II. Unequal fitness of homozygotes. III. A heterogeneous area that includes a site with a reduced gene migration, in Problemy evolyutsii (Problems of Evolution), Novosibirsk: Nauka, 1972, vol. 2, pp. 219–232.

    Google Scholar 

  • Bazykin, A.D., Hypothetical mechanism of speciation, Evolution, 1969, vol. 23, no. 4, pp. 685–687.

    Article  Google Scholar 

  • Berthelot, C., Muffato, M., Abecassis, J., and Crollius, H.R., The 3D organization of chromatin explains evolutionary fragile genomic regions, Cell Rep., 2015, vol. 10, pp. 1913–1924.

    Article  CAS  PubMed  Google Scholar 

  • Bininda-Emonds, O.R.P., Cardillo, M., Jones, K.E., et al., The delayed rise of present-day mammals, Nature, 2007, vol. 446, pp. 507–512.

    Article  CAS  PubMed  Google Scholar 

  • Bogdanov, A.S., Chromosomal differentiation of populations of pygmy wood mouse Sylvaemus uralensis in the eastern part of the species range, Zool. Zh., 2001, vol. 80, no. 3, pp. 331–342.

    Google Scholar 

  • Bogdanov, Yu.F., Evolution of meiosis in unicellular and multicellular eukaryotes. Aromorphosis at the cellular level, Zh. Obshch. Biol., 2008, vol. 29, pp. 102–107.

    Google Scholar 

  • Bogdanov, A.S. and Rozanov, Yu.M., Variability in size of the nuclear genome in pygmy wood mouse Sylvaemus uralensis (Rodentia, Muridae), Russ. J. Genet., 2005, vol. 41, no. 10, pp. 1123–1129.

    Article  CAS  Google Scholar 

  • Böhne, A., Brunet, F., Galiana-Arnoux, D., Schultheis, C., and Volff, J.N., Transposable elements as drivers of genomic and biological diversity in vertebrates, Chromosome Res., 2008, vol. 16, pp. 203–215.

    Article  PubMed  CAS  Google Scholar 

  • Boveri, T., Die Blastomerenkerne von Ascaris megalocephala und die Theorie der Chromosomenindividualität, Arch. Zellforschung. B, 1909, pp. 181–268.

    Google Scholar 

  • Boyle, S., Rodesch, M.J., Halvensleben, H.A., Jeddeloh, J.A., and Bickmore, W.A., Fluorescence in situ hybridization with high-complexity repeat-free oligonucleotide probes generated by massively parallel synthesis, Chromosome Res., 2011, vol. 19, pp. 901–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Branco, M.R. and Pombo, A., Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations, PLoS Biol., 2006, vol. 4, no. 5, p. 780.

    Article  CAS  Google Scholar 

  • Brick, K., Smagulova, F., Khil, P., Camerini-Otero, R.D., and Petukhova, G.V., Genetic recombination is directed away from functional genomic elements in mice, Nature, 2012, vol. 485, pp. 642–645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bridges, C.B., Non-disjunction as proof of the chromosome theory of heredity, Genetics, 1916, vol. 1, pp. 107–163.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brinkley, B.R. and Stubblefield, E., The fine structure of the kinetochore of a mammalian cell in vitro, Chromosoma, 1966, vol. 19, pp. 28–43.

    Article  CAS  PubMed  Google Scholar 

  • Brown, J.D., Mitchell, S.E., and O’Neill, R.J., Making a long story short: noncoding rnas and chromosome change, Heredity, 2012, vol. 108, pp. 42–49.

    Article  CAS  PubMed  Google Scholar 

  • Bush, G.L., Case, S.M., Wilson, A.S., and Patton, J.L., Rapid speciation and chromosomal evolution in mammals, Proc. Natl. Acad. Sci. U. S. A., 1977, vol. 74, pp. 3942–3946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capanna, E. and Castiglia, R., Chromosomes and speciation in Mus musculus domesticus, Cytogenet. Genome Res., 2004, vol. 105, pp. 375–384.

    Article  CAS  PubMed  Google Scholar 

  • Capanna, E., Robertsonian numerical variation in animal speciation: Mus musculus an emblematic model, in Mechanism of Speciation, Barigozzi, C., Ed., New York: Alan Liss, 1982, pp. 155–177.

    Google Scholar 

  • Carson, H.L., Speciation as a major reorganization of polygenic balances, in Mechanism of Speciation, Barigozzi, C., Ed., New York: Alan Liss, 1982, pp. 411–433.

    Google Scholar 

  • Catania, S. and Allshire, R.C., Anarchic centromeres: deciphering order from apparent chaos, Curr. Opin. Cell Biol., 2014, vol. 26, pp. 41–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalopin, D., Naville, M., Plard, F., Galiana, D., and Volff, J.N., Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates, Genome Biol. Evol., 2015, vol. 7, pp. 567–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chevin, L.-M. and Hospital, F., The hitchhiking effect of an autosomal meiotic drive gene, Genetics, 2006, vol. 173, pp. 1829–1832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craig, J.M. and Bickmore, W.A., Chromosome bands— flavours to savour, BioEssays, 1993, vol. 15, pp. 349–354.

    Article  CAS  PubMed  Google Scholar 

  • Cremer, M., von Hase, J., Volm, T., Brero, A., Kreth, G., et al., Non-random radial higher-order chromatin arrangements in nuclei of diploid cells, Chromosome Res., 2001, vol. 9, pp. 541–567.

    Article  CAS  PubMed  Google Scholar 

  • Cremer, T., Cremer, M., Hübner, B., Strickfaden, H., Smeets, D., et al., The 4D nucleome: evidence for a dynamic nuclear landscape based on co-aligned active and inactive nuclear compartments, FEBS Lett., 2015, vol. 589, no. 20, part A, pp. 2931–2943.

    Article  CAS  PubMed  Google Scholar 

  • Crespi, B. and Nosil, P., Conflictual speciation: species formation via genomic conflict, Trends Ecol. Evol., 2013, vol. 28, pp. 48–57.

    Article  PubMed  Google Scholar 

  • Croft, J.A., Bridger, J.M., Boyle, S., Perry, P., Teague, P., and Bickmore, W.A., Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol., 1999, vol. 145, pp. 1119–1131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cytotaxonomy and Vertebrate Evolution, Chiarelli, A.B. and Capanna, E., Eds., London: Acad. Press, 1973.

  • Darlington, C.D., Polyploidy in animals, Nature, 1953, vol. 171, no. 4344, pp. 191–194.

    Article  CAS  PubMed  Google Scholar 

  • Darlington, C.D., The external mechanics of chromosomes, Proc. Roy. Soc. Lond., Ser. B: Biol. Sci., 1936, vol. 121, pp. 264–319.

    Article  Google Scholar 

  • Darlington, C.D., The Evolution of Genetic Systems, Cambridge: University Press, 1939.

    Google Scholar 

  • Darwin C., On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, London: John Murray, 1859.

    Book  Google Scholar 

  • Darwin, C.R., The Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, 6th ed., London: John Murray, 1872.

    Book  Google Scholar 

  • Delone, L.N., Comparative karyological study of species Muscari Mill. and Bellevalia Lapeyr., Vestn. Tiflis. Bot. Sada, 1922, vol. 2, no. 1, pp. 1–32.

    Google Scholar 

  • Dobigny, G., Britton-Davidian, J., and Robinson, T.J., Chromosomal polymorphism in mammals: an evolutionary perspective, Biol. Rev., 2015. doi 10.1111/brv.12213

    Google Scholar 

  • Dobzhansky, F., Genetika i proiskhozhdenie vidov (Genetics and the Origin of Species), Moscow–Izhevsk, 2010.

    Google Scholar 

  • Dobzhansky, T., Genetics and the Origin of Species, New York: Columbia Univ. Press, 1937.

    Google Scholar 

  • Evgen’ev, M., Zelentsova, E., Poluectova, H., Lyoziin, G., Velikodvorskaya, V., et al., Mobile elements and chromosomal evolution in the virilis group of Drosophila, Proc. Natl. Acad. Sci. U. S. A., 2000, vol. 97, pp. 11337–11342.

    Article  PubMed  PubMed Central  Google Scholar 

  • Faria, R. and Navarro, A., Chromosomal speciation revisited: rearranging theory with pieces of evidence, Trends Ecol. Evol., 2010, vol. 25, pp. 660–669.

    Article  PubMed  Google Scholar 

  • Farré, M., Robinson, T.J., and Ruiz-Herrera, A., An integrative breakage model of genome architecture, reshuffling and evolution, BioEssays, 2015, vol. 37, pp. 479–488.

    Article  PubMed  Google Scholar 

  • Ferguson-Smith, M.A., Genetic analysis by chromosome sorting and painting: phylogenetic and diagnostic applications, Eur. J. Hum. Genet., 1997, vol. 5, pp. 253–265.

    CAS  PubMed  Google Scholar 

  • Ferguson-Smith, M.A., History and evolution of cytogenetics, Mol. Cytogenet., 2015, vol. 8, p. 19. doi 10.1186/s13039-015-0125-8

    Google Scholar 

  • Ferguson-Smith, M.A. and Trifonov, V., Mammalian karyotype evolution, Nature Rev. Genet., 2007, vol. 8, pp. 950–962.

    Article  CAS  PubMed  Google Scholar 

  • Ferree, P.M. and Barbash, D.A., Species-specific heterochromatin prevents mitotic chromosome segregation to cause hybrid lethality in Drosophila, PLoS Biol., 2009, vol. 7, no. 10, p. 2310.

    Article  CAS  Google Scholar 

  • Futuyma, D.J. and Mayer, G.C., Non-allopatric speciation in animals, Syst. Biol., 1980, vol. 29, pp. 254–271.

    Article  Google Scholar 

  • Gallardo, M.H., Bickham, J.W., Honeycutt, R.L., Ojeda, R.A., and Köhler, N., Discovery of tetraploidy in a mammal, Nature, 1999, vol. 401, p. 341.

    Article  CAS  PubMed  Google Scholar 

  • Gallardo, M.H., Bickham, J.W., Kausel, G., Köhler, N., and Honeycutt, R.L., Gradual and quantum genome size shifts in the hystricognath rodents, J. Evol. Biol., 2003, vol. 16, pp. 163–169.

    Article  CAS  PubMed  Google Scholar 

  • Gallardo, M.H., Kausel, G., Jiménez, A., Bacquet, C., González, C., et al., Whole-genome duplications in South American desert rodents (Octodontidae), Biol. J. Linn. Soc., 2004, vol. 82, pp. 443–451.

    Article  Google Scholar 

  • Garagna, S., Marziliano, N., Zucotti, M., Searle, J., Capanna, E., and Redi, C.A., Pericentromeric organization at the fusion point of mouse Robertsonian translocation chromosomes, Proc. Natl. Acad. Sci. U. S. A., 2001, vol. 98, pp. 171–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garagna, S., Page, J., Fernandez-Donoso, R., Zuccotti, M., and Searle, J.B., The Robertsonian phenomenon in the house mouse: mutation, meiosis and speciation, Chromosoma, 2014, vol. 123, pp. 529–544.

    Article  PubMed  Google Scholar 

  • Gavrilov, A.A. and Razin, S.V., Compartmentalization of the cell nucleus and spatial organization of the genome, Mol. Biol. (Moscow), 2015, vol. 49, no. 1, pp. 21–39.

    Article  CAS  Google Scholar 

  • Godo, A., Blanco, J., Vidal, F., Sandalinas, M., Garcia-Guixè, E., and Anton, E., Altered segregation pattern and numerical chromosome abnormalities interrelate in spermatozoa from Robertsonian translocation carriers, Reprod. Biomed. Online, 2015, vol. 31, pp. 79–88.

    Article  PubMed  Google Scholar 

  • Goldschmidt, R., The Material Basis of Evolution, New Haven: Yale Univ. Press, 1940.

    Google Scholar 

  • Golubovsky, M.D., Vek genetiki: evolyutsiya idei i ponyatii (The Age of Genetics: The Evolution of Ideas and Concepts), St. Petersburg: Borei Art, 2000.

    Google Scholar 

  • Grant, V., The Evolutionary Process: A Critical Review of Evolutionary Theory, New York: Columbia Univ. Press, 1985.

    Google Scholar 

  • Graphodatsky, A.S., Comparative chromosomics, Mol. Biol. (Moscow), 2007, vol. 41, no. 3, pp. 361–375.

    Article  CAS  Google Scholar 

  • Graphodatsky, A.S., Trifonov, V.A., and Stanyon, R., The genome diversity and karyotype evolution of mammals, Mol. Cytogenet., 2011, vol. 4, pp. 22–37.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gropp, A., Winking, H., Zech, L., and Muller, H.J., Robertsonian chromosomal variation and identification of metacentric chromosomes in feral mice, Chromosoma, 1972, vol. 39, pp. 265–288.

    Article  CAS  PubMed  Google Scholar 

  • Henking, H., Über Spermatogenese und deren Beziehung zur Eientwicklung bei Pyrrhocoris apterus L., Zeit schrift für wissenschaftliche Zoologie. B, 1891, pp. 685–736.

    Google Scholar 

  • Hinchliff, C., Smith, S., Allmanb, J., Burleighc, J., Chaudharyc, R., et al., Synthesis of phylogeny and taxonomy into a comprehensive tree of life, Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, no. 41, pp. 12764–12769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holland, P.W.H. and Garcia-Fernandez, J., Hox genes and chordate evolution, Dev. Biol., 1996, vol. 173, pp. 382–395.

    Article  CAS  PubMed  Google Scholar 

  • Holmquist, G.P., Chromosome band, there chromatin flavor and their functional features, Am. J. Hum. Genet., 1992, vol. 51, pp. 17–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Homolka, D., Ivanek, R., Capkova, J., Jansa, P., and Forejt, J., Chromosomal rearrangement interferes with meiotic X chromosome inactivation, Genome Res., 2007, vol. 17, pp. 1431–1437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hori, T. and Fukagawa, T., Establishment of the vertebrate kinetochores, Chromosome Res., 2012, vol. 20, pp. 547–561.

    Article  CAS  PubMed  Google Scholar 

  • Horn, A., Basset, P., Yannic, G., Banaszek, A., Borodin, P.M., et al., Chromosomal rearrangements do not seem to affect the gene flow in hybrid zones between karyotypic races of the common shrew (Sorex araneus), Evolution, 2012, vol. 66, pp. 882–889.

    Article  PubMed  Google Scholar 

  • Hsu, T.C. and Benirschke, K., An Atlas of Mammalian Chromosomes, Springer Science and Business Media, 1967–1977, vols. 1–10.

  • Jackson, D.A., Nuclear organization: uniting replication foci, chromatin domains and chromosome structure, Bio-Essays, 1995, vol. 17, pp. 587–591.

    CAS  Google Scholar 

  • Jokelainen, P.T., The ultrastructure and spatial organization of the metaphase kinetochore in mitotic rat cells, J. Ultrastructure Res., 1967, vol. 19, pp. 19–44.

    Article  CAS  Google Scholar 

  • Karamysheva, T.V., Bogdanov, A.S., Kartavtseva, I.V., et al., Comparative FISH analysis of C-positive blocks of centromeric chromosomal regions of pygmy wood mice Sylvaemus uralensis (Rodentia, Muridae), Russ. J. Genet., 2010, vol. 46, no. 6, pp. 712–724.

    Article  CAS  Google Scholar 

  • Karpechenko, G.D., Polyploid hybrids Raphanus satrivus L. × Brassica oleracea L. (on the problem of experimental speciation), Trudy Prikl. Bot. Genet. Selekts., 1927, vol. 17, no. 3, pp. 305–410.

    Google Scholar 

  • Katz, L.A., Grant, J.R., Parfrey, L.W., and Burleigh, J.G., Turning the crown upside down: gene tree parsimony roots the eukaryotic tree of life, Syst. Biol., 2012, vol. 61, pp. 653–660.

    Article  PubMed  PubMed Central  Google Scholar 

  • King, M., Species Evolution. The Role of Chromosome Change, Cambridge: Cambridge University Press, 1993.

    Google Scholar 

  • Korochkin, L.I., What is epigenetics, Russ. J. Genet., 2006, vol. 42, no. 9, pp. 958–965.

    Article  CAS  Google Scholar 

  • Kozubek, S., Lukásová, E., Jirsová, P., Koutná, I., Kozubek, M., et al., 3D structure of the human genome: order in randomness, Chromosoma, 2002, vol. 111, pp. 321–331.

    Article  CAS  PubMed  Google Scholar 

  • de Laat, W. and Grosveld, F., Spatial organization of gene expression: the active chromatin hub, Chromosome Res., 2003, vol. 11, pp. 447–459.

    Article  PubMed  Google Scholar 

  • Lande, R., Effective deme sizes during long-term evolution estimated from rates of chromosomal rearrangement, Evolution, 1979, vol. 33, pp. 234–251.

    Article  Google Scholar 

  • Larson, A., Prager, E.M., and Wilson, A.C., Chromosomal evolution, speciation and morphological change in vertebrates: the role of social behavior, in Chromosomes Today, Bennett, M.D., Gropp, A., and Wolf, U., Eds., London: George Allen and Unwin., 1984, vol. 8, pp. 215–228.

    Article  Google Scholar 

  • Lavrenchenko, L.A. and Bulatova, N.Sh., The role of hybrid zones in speciation: a case study on chromosome races of the house mouse Mus domesticus and common shrew Sorex araneus, Biol. Bull. Rev., 2016, vol. 6, no. 3, pp. 232–244.

    Article  Google Scholar 

  • Leffler, E.M., Bullaughey, K., Matute, D.R., Meyer, W.K., Segurel, L., et al., Revisiting an old riddle: what determines genetic diversity levels within species?, PLoS Biol., 2012, vol. 10, p. e1001388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levitskii, G.A, Material’nye osnovy nasledstvennosti (The Material Basis of Heredity), Kiev: Gosizdat, 1924 (republication: Levitskii, G.A., Tsitologiya rastenii. Izbrannye trudy (Plant Cytology. Selected Works), Moscow: Nauka, 1976).

    Google Scholar 

  • Lewontin, R., The Genetic Basis of Evolutionary Change, Columbia Univ. Press, 1974.

    Google Scholar 

  • Lukhtanov, V.A., Shapoval, N.A., Anokhin, B.A., Saifitdinova, A.F., and Kuznetsova, V.G., Homoploid hybrid speciation and genome evolution via chromosome sorting, Proc. Roy. Soc. Lond. B: Biol. Sci., 2015, vol. 282, no. 1807, p. 20150157.

    Article  Google Scholar 

  • Lyttle, T.W., A theoretical analysis of the effects of sex chromosome aneuploidy on X and Y chromosome meiotic drive, Evolution, 1982, vol. 36, pp. 822–831.

    Article  Google Scholar 

  • Lyttle, T.W., Experimental population genetics of meiotic drive system. III. Neutralization of sex-ratio distortion in drosophila through sex chromosome aneuploidy, Genetics, 1981, vol. 98, pp. 317–334.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mable, B., ‘Why polyploidy is rare in animals than in plants’: myths and mechanisms, Biol. J. Linn. Soc., 2004, vol. 82, pp. 453–466.

    Article  Google Scholar 

  • Maheshwari, S. and Barbash, D.A., The genetics of hybrid incompatibilities, Ann. Rev. Genet., 2011, vol. 45, pp. 331–355.

    Article  CAS  PubMed  Google Scholar 

  • Mahy, N.I., Perry, P.E., Gilchrist, S., Baldock, R.A., and Bickmore, W.A., Spatial organization of large-scale chromatin domains in the nucleus: a magnified view of single chromosome territories, J. Cell Biol., 2002, vol. 139, pp. 1597–1610.

    Google Scholar 

  • Makunin, A.I., Dementyeva, P.V., Graphodatsky, A.S., Volobouev, V.T., Kukekova, A.V., and Trifonov, V.A., Genes on B chromosomes of vertebrates, Mol. Cytogenet., 2014, vol. 7, p. 99.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mares, M.A., Braun, J.K., Bárquez, R.B., and Díaz, M., Two new genera and species of halophytic desert mammals from isolated salt flats in Argentina, Occasional Papers Museum of Texas Tech University, 2000, no. 203, pp. 1–27.

    Google Scholar 

  • Marshall, O.J., Chueh, A.C., Wong, L.H., and Choo, K.A., Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution, Am. J. Hum. Genet., 2008, vol. 82, pp. 261–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthey, R., Chromosomes, heterochromosomes and comparative cytology of the palaearctic Cricetinae (Rodentia), Caryologia, 1960, vol. 13, pp. 199–223.

    Google Scholar 

  • Matthey, R., The chromosome formulae of eutherian mammals, in Cytotaxonomy and Vertebrate Evolution, Chiarelli, A.B. and Capanna, E., Eds., Academic Press, 1973, pp. 531–616.

    Google Scholar 

  • Matveevsky, S., Bakloushinskaya, I., Tambovtseva, V., Romanenko, S., and Kolomiets, O., Analysis of meiotic chromosome structure and behavior in Robertsonian heterozygotes of Ellobius tancrei: a case of monobrachial homology, Comp. Cytogenet., 2015, vol. 9, no. 4, pp. 691–706.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayer, W., Fundele, R., and Haaf, T., Spatial separation of parental genomes during mouse interspecific (Mus musculus–M. spretus) spermiogenesis, Chromosome Res., 2000, vol. 8, pp. 555–558.

    Article  CAS  PubMed  Google Scholar 

  • Mayr, E., Change of genetic environment and evolution, in Evolution as a Process, Huxley, J., Hardy, A.C., and Ford, E.B., Eds., London: Allen and Unwin, 1954, pp. 157–180.

    Google Scholar 

  • Mayr, E., What is a species, and what is not?, Philos. Sci., 1996, vol. 63, pp. 262–277.

    Article  Google Scholar 

  • McClintock, B., The significance of responses of the genome to challenge, Science, 1984, vol. 226, pp. 792–801.

    Article  CAS  PubMed  Google Scholar 

  • McClung, C.E., “The Accessory Chromosome—Sex Determinant?,” Biol. Bull., 1902, vol. 3, pp. 43–84.

    Article  Google Scholar 

  • Mihola, O., Trachtulec, Z., Vlcek, C., Schimenti, J.C., and Forejt, J., A mouse speciation gene encodes a meiotic histone H3 methyltransferase, Science, 2009, vol. 323, pp. 373–375.

    Article  CAS  PubMed  Google Scholar 

  • Montefalcone, G., Tempesta, S., Rocchi, M., and Archidiacono, N., Centromere repositioning, Genome Res., 1999, vol. 9, pp. 1184–1188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan, T.H., The Physical Basis of Heredity, Philadelphia: J.B. Lippincott, 1919.

    Book  Google Scholar 

  • Morgan, T.H., Sturtevant, A.H., Muller, H.J., and Bridges, C.B., The Mechanism of Mendelian Heredity, New York: Holt, 1915.

    Book  Google Scholar 

  • Muller, H.J., A gene for the fourth chromosome of Drosophila, J. Exp. Zool., 1914, vol. 17, pp. 325–336.

    Article  Google Scholar 

  • Murphy, W.J., Pevzner, P.A., and O’Brien, S.J., Mammalian phylogenomics comes of age, Trends Genet., 2004, vol. 20, pp. 631–639.

    Article  CAS  PubMed  Google Scholar 

  • Navashin, M.S., Ob izmenenii chisla i morfologicheskikh priznakov khromosom u mezhvidovykh gibridov, Trudy po prikladnoi botanike, genetike i selektsii, 1927, vol. 17.

  • Nei, M., Maruyama, T., and Wu, C.I., Models of evolution of reproductive isolation, Genetics, 1983, vol. 103, pp. 557–579.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann, P., Navrátilová, A., Schroeder-Reiter, E., Koblížková, A., Steinbauerová, V., et al., Stretching the rules: monocentric chromosomes with multiple centromere domains, PLoS Genet., 2012, vol. 8, p. e1002777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noor, M.A. and Bennett, S.M., Islands of speciation or mirages in the desert? Examining the role of restricted recombination in maintaining species, Heredity, 2009, vol. 103, pp. 439–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orlov, V.N. and Bulatova, N.Sh., Sravnitel’naya tsitogenetika i kariosistematika mlekopitayushchikh (Comparative Cytogenetics and Karyosystematics of Mammals), Moscow: Nauka, 1983.

    Google Scholar 

  • Orr, H.A., “Why polyploidy is rare in animals than in plants” revisited, Am. Nat., 1990, vol. 136, pp. 759–770.

    Article  Google Scholar 

  • Orr, H.A. and Irving, S., Segregation distortion in hybrids between the Bogota and United States subspecies of Drosophila pseudoobscura, Genetics, 2005, vol. 169, pp. 671–682.

    Article  PubMed  PubMed Central  Google Scholar 

  • Orr, H.A., Masly, J.P., and Presgraves, D.C., Speciation genes, Curr. Opin. Genet. Dev., 2004, vol. 14, pp. 675–679.

    Article  CAS  PubMed  Google Scholar 

  • Parada, L. and Misteli, T., Chromosome positioning in the interphase nucleus, Trends Cell Biol., 2002, vol. 12, no. 9, pp. 425–432.

    Article  CAS  PubMed  Google Scholar 

  • Parvanov, E.D., Petkov, P.M., and Paigen, K., Prdm9 controls activation of mammalian recombination hotspots, Science, 2010, vol. 327, pp. 835–835.

    Article  CAS  PubMed  Google Scholar 

  • Van de Peer, Y., Maere, S., and Meyer, A., The evolutionary significance of ancient genome duplications, Nature Rev. Genet., 2009, vol. 10, pp. 725–732.

    Article  PubMed  CAS  Google Scholar 

  • Pfau, S.J. and Amon, A., Chromosomal instability and aneuploidy in cancer: from yeast to man, EMBO Rep., 2012, vol. 13, pp. 515–527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinho, C. and Hey, J., Divergence with gene flow: models and data, Ann. Rev. Ecol. Evol. Syst., 2010, vol. 41, pp. 215–230.

    Article  Google Scholar 

  • Plohl, M., Meštrovic, N., and Mravinac, B., Centromere identity from the DNA point of view, Chromosoma, 2014, vol. 123, pp. 313–325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polly, P.D., Polyakov, A.V., Ilyashenko, V.B., Onischenko, S.S., White, T.A., et al., Phenotypic variation across chromosomal hybrid zones of the common shrew (Sorex araneus) indicates reduced gene flow, PLoS One, 2013, vol. 8, p. e67455.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Potter, S., Moritz, C., and Eldridge, M.D., Gene flow despite complex Robertsonian fusions among rock-wallaby (Petrogale) species, Biol. Lett., 2015, vol. 11, p. 20150731. doi 10.1098/rsbl.2015.0731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Presgraves, D.C., Hitchhiking to speciation, PLoS Biol., 2013, vol. 11, no. 2, p. e1001498. doi 10.1371/journal. pbio.1001498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prokof’eva-Bel’govskaya, A.A., Geterokhromaticheskie raiony khromosom (Heterochromatic Chromosome Regions), Moscow: Nauka, 1986.

    Google Scholar 

  • Qumsiyeh, M.B., Evolution of number and morphology of mammalian chromosomes, J. Hered., 1994, vol. 1985, pp. 455–465.

    Article  Google Scholar 

  • Qumsiyeh, M.B., Structure and function of the nucleus: anatomy and physiology of chromatin, Cell. Mol. Life Sci., 1999, vol. 55, pp. 1129–1140.

    Article  CAS  PubMed  Google Scholar 

  • Rabl, C., Über Zellteilung, Morphologisches Jahrbuch., 1885, vol. 10, pp. 214–330.

    Google Scholar 

  • Robinson, T.J., Ruiz-Herrera, A., and Avise, J.C., Hemiplasy and homoplasy in the karyotypic phylogenies of mammals, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, pp. 14477–14481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocchi, M., Archidiacono, N., Schempp, W., Capozzi, O., and Stanyon, R., Centromere repositioning in mammals, Heredity, 2012, vol. 108, pp. 59–67.

    Article  CAS  PubMed  Google Scholar 

  • Romanenko, S.A., Biltueva, L.S., Serdyukova, N.A., Kulemzina, A.I., Beklemisheva, V.R., et al., Segmental paleotetraploidy revealed in sterlet (Acipenser ruthenus) genome by chromosome painting, Mol. Cytogenet., 2015, vol. 8, p. 90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Romiguier, J., Gayral, P., Ballenghien, M., Bernard, A., Cahais, V., et al., Comparative population genomics in animals uncovers the determinants of genetic diversity, Nature, 2014, vol. 515, no. 7526, pp. 261–263.

    Article  CAS  PubMed  Google Scholar 

  • Rubtsov, N.B., Karamysheva, T.V., Bogdanov, A.S., Likhoshvai, T.V., and Kartavtseva, I.V., Comparative FISH analysis of C-positive regions of chromosomes of wood mice (Rodentia, Muridae, Sylvaemus), Russ. J. Genet., 2011, vol. 47, no. 9, pp. 1096–1110.

    Article  CAS  Google Scholar 

  • Sacristan, C. and Kops, G.J., Joined at the hip: kinetochores, microtubules, and spindle assembly checkpoint signaling, Trends Cell Biol., 2015, vol. 25, pp. 21–28.

    Article  CAS  PubMed  Google Scholar 

  • Sandler, L.R. and Novitski, E., Meiotic drive as an evolutionary force, Am. Nat., 1957, vol. 120, pp. 510–532.

    Google Scholar 

  • Scherthan, H., Cremer, T., Arnason, U., Weier, H.U., Lima-de-Faria, A., and Fronicke, L., Comparative chromosome painting discloses homologous segments in distantly related mammals, Nat. Genet., 1994, vol. 6, pp. 342–347.

    Article  CAS  PubMed  Google Scholar 

  • Schrader, F., Kinetic regions in chromosomes, Nature, 1939, vol. 143, p. 122.

    Article  Google Scholar 

  • Schumer, M., Cui, R., Rosenthal, G.G., and Andolfatto, P., Reproductive isolation of hybrid populations driven by genetic incompatibilities, PLoS Genet., 2015, vol. 11, p. e1005041.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Searle, J.B., Three new karyotypic races of the common shrew Sorex araneus (Mammalia: Insectivora) and a phylogeny, Syst. Zool., 1984, vol. 33, pp. 184–194.

    Article  Google Scholar 

  • Searle, J.B., Hausser, J., Zima, J., Fredga, K., Wójcik, J.M., et al., The ISACC heritage, Russ. J. Theriol., 2007, vol. 6, pp. 123–167.

    Google Scholar 

  • Shapiro, J.A., Genome organization and reorganization in evolution: formatting for computation and function, Ann. N.Y. Acad. Sci., 2002, vol. 981, pp. 111–134.

    Article  CAS  PubMed  Google Scholar 

  • Shapiro, J.A., A 21st century view of evolution: genome system architecture, repetitive DNA, and natural genetic engineering, Gene, 2005, vol. 345, no. 1, pp. 91–100.

    Article  CAS  PubMed  Google Scholar 

  • Shapiro, J.A., Revisiting the central dogma in the 21st century, Ann. N.Y. Acad. Sci., 2009, vol. 1178, no. 1, pp. 6–28.

    Article  CAS  PubMed  Google Scholar 

  • Shapiro, J.A., Rethinking the (im)possible in evolution, Progr. Biophys. Mol. Biol., 2013, vol. 111, pp. 92–96.

    Article  CAS  Google Scholar 

  • Shchipanov, N.A. and Pavlova, S.V., Evolutionary and taxonomic differentiation of species of shrews in the “araneus” species group of the genus Sorex. Communication 1. Levels of chromosomal differentiation, Biol. Bull. (Moscow), 2016, vol. 43 (in press).

  • Sherudilo, A.I. and Semeshin, V.F., Comparison of chromosome sets and the amount of DNA in the nucleus of some Palearctic hamsters, in Materialy ko IIV ses. soveshch. po mlekopitayushchim. Mlekopitayushchie, evolyutsiya, kariologiya, sistematika, faunistika (Proceedings of the II All- Union Conference on Mammals: Mammals, Evolution, Karyology, Systematics, and Faunistics), Novosibirsk, 1969, p. 110.

    Google Scholar 

  • Simpson, A.G. and Roger, A.J., The real ‘kingdoms’ of eukaryotes, Curr. Biol., 2004, vol. 14, no. 17, pp. R693–R696.

    Article  CAS  PubMed  Google Scholar 

  • Stanyon, R. and Bigoni, F., Primate chromosome evolution: with reference to marker order and neocentromeres, Russ. J. Genet., 2010, vol. 46, pp. 1226–1233.

    Article  CAS  Google Scholar 

  • Stanyon, R., Rocchi, M., Capozzi, O., Roberto, R., Misceo, D., et al., Primate chromosome evolution: ancestral karyotypes, marker order and neocentromeres, Chromosome Res., 2008, vol. 16, pp. 17–39.

    Article  CAS  PubMed  Google Scholar 

  • Stegnii, V.N., Arkhitektonika genoma, sistemnye mutatsii i evolyutsiya (Genome Architectonics, System Mutations, and Evolution), Novosibirsk: Izd. Novosibirsk. Gos. Univ., 1993.

    Google Scholar 

  • Steiner, F.A. and Henikoff, S., Diversity in the organization of centromeric chromatin, Curr. Opin. Genet. Dev., 2015, vol. 31, pp. 28–35.

    Article  CAS  PubMed  Google Scholar 

  • Stevens, N.M., Studies in Spermatogenesis with Especial Reference to the “Accessory Chromosome,” Washington, D.C.: Carnegie Institution, 1905.

    Google Scholar 

  • Suárez -Villota, E.Y., Vargas, R.A., Marchant, C.L., Torres, J.E., Köhler, N., et al., Distribution of repetitive DNAs and the hybrid origin of the red vizcacha rat (Octodontidae), Genome, 2012, vol. 55, pp. 105–117.

    Article  PubMed  CAS  Google Scholar 

  • Sun, H.B., Shen, J., and Yokota, H., Size-dependent positioning of human chromosomes in interphase nuclei, Biophys. J., 2000, vol. 79, pp. 184–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutton, W.S., The chromosomes in heredity, Biol. Bull., 1903, vol. 4, pp. 231–250.

    Article  Google Scholar 

  • Szyf, M., Nongenetic inheritance and transgenerational epigenetics, Trends Mol. Med., 2015, vol. 21, pp. 134–144.

    Article  PubMed  Google Scholar 

  • Tanabe, H., Müller, S., Neusser, M., von Hase, J., Calcagno, E., et al., Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates, Proc. Natl. Acad. Sci. U. S. A., 2002, vol. 99, pp. 4424–4429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Telenius, H., Pelmear, A.H., Tunnacliffe, A., Carter, N.P., Behind, A., et al., Cytogenetic analysis by chromosome painting using DOP–PCR amplified flow-sorted chromosomes, Genes Chromosomes Cancer, 1992, vol. 4, pp. 257–263.

    Article  CAS  PubMed  Google Scholar 

  • Templeton, A.R., Mechanisms of speciation—a population genetics approach, Ann. Rev. Ecol. Syst., 1981, vol. 12, pp. 23–48.

    Article  Google Scholar 

  • Thompson, S.L., Bakhoum, S.F., and Compton, D.A., Mechanisms of chromosomal instability, Curr. Biol., 2010, vol. 2, pp. R285–R295.

    Article  CAS  Google Scholar 

  • Vermaak, D. and Malik, H.S., Multiple roles for heterochromatin protein 1 genes in Drosophila, Ann. Rev. Genet., 2009, vol. 43, pp. 467–492.

    Article  CAS  PubMed  Google Scholar 

  • de Villena, F.P.M. and Sapienza, C., Female meiosis drives karyotypic evolution in mammals, Genetics, 2001, vol. 159, pp. 1179–1189.

    Google Scholar 

  • Vorontsov, N.N., The significance of the study of chromosome sets for the systematics of mammals, Byull. Mosk. Obshch. Ispytat. Prirody, Otdel. Biol., 1958, vol. 63, pp. 5–86.

    Google Scholar 

  • Vorontsov, N.N., Species of hamsters of the Palaearctic (Cricetinae, Rodentia) in statu nascendi, Dokl. Akad. Nauk SSSR, 1960, vol. 132, pp. 1448–1451.

    Google Scholar 

  • Vorontsov, N.N., Razvitie evolyutsionnykh idei v biologii (The Development of Evolutionary Ideas in Biology), Moscow: Izd. Otdel UNTs DOMGU, Progress-Traditsiya, ABF, 1999.

    Google Scholar 

  • Vorontsov, N.N., Lyapunova, E.A., Zakaryan, G.G., and Ivanov, V.G., Karyology and taxonomy of the genus Ellobius (Microtinae, Rodentia), in Materialy ko II Vses. Soveshch. po mlekopitayushchim. Mlekopitayushchie, evolyutsiya, kariologiya, sistematika, faunistika (Proceedings of the II All-Union Conference on Mammals: Mammals, Evolution, Karyology, Ssystematics, and Faunistics), Novosibirsk, 1969, pp. 127–129.

    Google Scholar 

  • Voullaire, L.E., Slater, H.R., Petrovic, V., and Choo, K.H., A functional marker centromere with no detectable alphasatellite, satellite III, or CENP-B protein: activation of a latent centromere?, Am. J. Hum. Genet., 1993, vol. 52, pp. 1153–1163.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wade, C.M., Giulotto, E., Sigurdsson, S., Zoli, M., Gnerre, S., et al., Genome sequence, comparative analysis, and population genetics of the domestic horse, Science, 2009, vol. 326, pp. 865–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waldeyer, W., Über Karyokinese und ihre Beziehungen zu den Befruchtungsvorgängen, Archiv für mikroskopische Anatomie, 1888, vol. 32, no. 1, pp. 1–122.

    Article  Google Scholar 

  • Wallace, B., On co-adaptation in Drosophila, Am. Nat., 1953, vol. 87, pp. 343–358.

    Article  Google Scholar 

  • Walsh, J.B., Rate of accumulation of reproductive isolation by chromosome rearrangements, Am. Nat., 1982, vol. 120, pp. 510–532.

    Article  Google Scholar 

  • Watson, J.D. and Crick, F.H.C., Molecular structure of nucleic acids, Nature, 1953, vol. 171, pp. 737–738.

    Article  CAS  PubMed  Google Scholar 

  • Wendt, K.S. and Grosveld, F.G., Transcription in the context of the 3D nucleus, Curr. Opin. Genet. Dev., 2014, vol. 25, pp. 62–67.

    Article  CAS  PubMed  Google Scholar 

  • Wertheim, B., Beukeboom, L.W., and Van de Zande, L., Polyploidy in animals: effects of gene expression on sex determination, evolution and ecology, Cytogenet. Genome Res., 2013, vol. 140, pp. 256–269.

    Article  CAS  PubMed  Google Scholar 

  • White, M.J.D., Models of speciation. New concepts suggest that the classical sympatric and allopatric models are not the only alternatives, Science, 1968, vol. 159, pp. 1065–1070.

    Article  CAS  PubMed  Google Scholar 

  • White, M.J.D., Modes of Speciation, San Francisco: Freeman, 1978.

    Google Scholar 

  • White, M.J.D., Chain processes in chromosomal speciation, Syst. Biol., 1978a, vol. 27, pp. 285–298.

    Google Scholar 

  • White, M.J.D., Rectangularity, speciation, and chromosome architecture, in Mechanism of Speciation, Barigozzi, C., Ed., New York: Alan Liss, 1982, pp. 75–103.

    Google Scholar 

  • Wienberg, J. and Stanyon, R., Comparative painting of mammalian chromosomes, Curr. Opin. Genet. Dev., 1997, vol. 7, pp. 784–791.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, E.B., The chromosomes in relation to the determination of sex in insects, Science, 1905, vol. 22, pp. 501–502.

    Article  Google Scholar 

  • Wilson, A.C., Bush, G.L., Case, S.M., and King, M.C., Social structuring of mammalian populations and rate of chromosomal evolution, Proc. Natl. Acad. Sci. U. S. A., 1975, vol. 72, pp. 5061–5065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkler, H., Verbreitung und Ursache der Parthenogenesis im Pflanzen—und Tierreiche, Jena: Verlag Fischer, 1920.

    Book  Google Scholar 

  • Wright, S., Evolution in Mendelian populations, Genetics, 1931, vol. 16, pp. 97–159.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, G., Hao, L., Han, Z., Gao, S., Latham, K.E., et al., Maternal transmission-ratio distortion at the mouse om locus results from meiotic drive at the second meiotic division, Genetics, 2005, vol. 170, pp. 327–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida, T.H., Cytogenetics of Black Rat. Karyotype Evolution and Species Differentiation, Tokyo: Univ. of Tokyo Press, 1980.

    Google Scholar 

  • Zima, J., Lukáčová, L., and Macholán, M., Chromosomal evolution in shrews, in Evolution of Shrews, Wójcik, J. and Wolsan, M., Eds., Mammal Res. Inst. Polish Ac. Sci. Bialoveza, 1998, pp. 175–218.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Bakloushinskaya.

Additional information

100 Years of Zoologicheskii Zhurnal

Original Russian Text © I.Yu. Bakloushinskaya, 2016, published in Zoologicheskii Zhurnal, 2016, Vol. 95, No. 4, pp. 376–393.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakloushinskaya, I.Y. Chromosomal rearrangements, genome reorganization, and speciation. Biol Bull Russ Acad Sci 43, 759–775 (2016). https://doi.org/10.1134/S1062359016080057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359016080057

Keywords

Navigation