Skip to main content
Log in

Quantum cascade laser-based photoacoustic sulfuryl fluoride sensing

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Although sulfuryl fluoride (SO2F2) is an efficient fumigant that does not react with the surface of indoor materials and does not reduce the stratospheric ozone shield, there are some concerns about its use. It is a toxic gas that attacks the central nervous system, and its global warming potential (GWP) value is 4780 for 100 years’ time. Therefore, it is a clear necessity of implementing detection methods for tracing such a molecule. In this work a sensitive photoacoustic setup was built to detect SO2F2 at concentrations of parts per billion by volume (ppbv). The symmetric S–O stretching mode was excited by a continuous-wave quantum cascade laser with radiation wavenumber ranging from 1275.7 to 1269.3 cm−1. The photoacoustic signal was generated by modulating the laser wavenumber at the first longitudinal mode of the photoacoustic cell with amplitude depth of 5 × 10−3 cm−1. The detection of a minimum SO2F2 concentration of 20 ppbv was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R.F. Hertel, T. Kielhorn, Environmental health criteria 166. (WHO, Geneva, 1995)

    Google Scholar 

  2. M. R. Derrick, H. D. Burgess, M. T. Baker, N. E. Binnie, J. Am. Inst. Conserv. 29, 77 (1990)

    Article  Google Scholar 

  3. A. Unger, A.P. Schniewind, W. Unger, Conservation of wood artifacts. (Springer, Berlin, 2001)

    Book  Google Scholar 

  4. V.C. Papadimitriou, R.W. Portmann, D.W. Fahey, J. Mühle, R.F. Weiss, J.B. Burkholder, J. Phys. Chem. A 112, 12657 (2008)

    Article  Google Scholar 

  5. J. Mühle, J. Huang, R.F. Weiss, R.G. Prinn, B.R. Miller, P.K. Salameh, C.M. Harth, P.J. Fraser, L.W. Porter, B.R. Greally, S. O’doherty, P.G. Simmonds, J. Geophys. Res 114, 306 (2009)

    Google Scholar 

  6. C. G. Athanassiou, T. W. Phillips, M. J. Aikins, M. M. Hasan, J. E. Throne. J. Econ. Entomol 105, 282 (2012)

    Article  Google Scholar 

  7. M. Bjørling-Poulsen, H.R. Andersen, P. Grandjean, Environ. Health (London). 7, 50 (2008)

    Article  Google Scholar 

  8. WT. Tsai, J. Environ. Sci. Heal. C. 28, 125 (2010)

    Article  Google Scholar 

  9. M.P. Sulbaek Andersen, D.R. Blake, F.S. Rowland, M.D. Hurley, T.J. Wallington, Environ. Sci. Technol. 43, 1067 (2009)

    Article  ADS  Google Scholar 

  10. W.J. Sutherland, S. Bardsley, L. Bennun, M. Clout, I.M. Côté, M.H. Depledge, L.V. Dicks, A.P. Dobson, L. Fellman, E. Fleishman, D.W. Gibbons, A.J. Impey, J.H. Lawton, F. Lickorish, D.B. Lindenmayer, T.E. Lovejoy, R.M. Nally, J. Madgwick, L.S. Peck, J. Pretty, S.V. Prior, K.H. Redford, J.P.W. Scharlemann, M. Spalding, A.R. Watkinson, Trends Ecol. Evol 26, 10 (2011)

    Article  Google Scholar 

  11. T.J. Dillon, A. Horowitz, J.N. Crowley, Atmos. Chem. Phys. 8, 1547 (2008)

    Article  ADS  Google Scholar 

  12. Z. Zhaoa, P.L. Lainea, J.M. Nicovichb, P.H. Wine, Proc. Natl. Acad. Sci. 107, 6610 (2010)

    Article  ADS  Google Scholar 

  13. G.R. Lima, L. Mota, A. Miklós, J. Angster, Z. Dubovski, M.G. da Silva, M. Sthel, H. Vargas, Appl. Phys. B. 117, 333 (2014)

    Article  ADS  Google Scholar 

  14. Z. Bozóki, A. Pogány, G. Szabó, Appl. Spectrosc. Rev. 46, 1 (2011)

    Article  ADS  Google Scholar 

  15. A. Miklós, P. Hess, Z. Bozóki, Rev. Sci. Instrum 72, 1937 (2001)

    Article  ADS  Google Scholar 

  16. M. Fehér, Y. Jiang, J.P. Maier, A. Miklós, Appl. Opt. 33, 1655 (1994)

    Article  ADS  Google Scholar 

  17. M. Angelmahr, A. Miklós, P. Hess, Appl. Opt. 47, 2806 (2008)

    Article  ADS  Google Scholar 

  18. S.W. Sharpe, T.J. Johnson, R.L. Sams, P. M. Chu, G.C. Rhoderick, P.A. Johnson, Appl. Spectrosc. 58, 1452 (2004)

    Article  ADS  Google Scholar 

  19. A. H. Veres, Z. Bozóki, Á. Mohácsi, M. Szakáll, G. Szabó, Appl. Spectrosc. 57, 900 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Capes-DAAD (Probral), CNPq, and FAPERJ are gratefully acknowledged for the financial support and scholarships, which made possible the stay of students in Stuttgart to perform this work. Mr. Z. Dubovski deserves the credit for his most valuable technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judit Angster.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minini, K.M.S., Bueno, S.C.E., da Silva, M.G. et al. Quantum cascade laser-based photoacoustic sulfuryl fluoride sensing. Appl. Phys. B 123, 61 (2017). https://doi.org/10.1007/s00340-017-6642-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6642-x

Keywords

Navigation