Skip to main content
Log in

Optical characterization of nanocomposite polymer formed by ion implantation of boron

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The boron-ion-implanted polymethylmethacrylate (B:PMMA) samples formed with an energy of 40 keV, ion doses ranging from 6.25 × 1014 to 2.5 × 1016 B+/cm2, and current density of <2 μA/cm2 were examined using UV–Vis spectroscopy. The gradual increase of absorbance at lower fluences (<1016 B+/cm2) and their saturation at higher fluences (>1016 B+/cm2) in the course of ion-induced carbonization are observed. The value of optical band gap energy of boron-ion-implanted layer E g opt,B was estimated given thickness of implanted layer as a maximum penetration depth of B+ ions into PMMA by slow positron beam spectroscopy in agreement with SRIM simulation results. On the basis of E g opt,B values, a number of carbon atoms in carbonaceous clusters N for the B:PMMA was calculated. It is found the existence of three regions of ion doses (1) 6.25 × 1014 ÷ 3.13 × 1015 B+/cm2, (2) 3.75 × 1015 ÷ 6.25 × 1015 B+/cm2, and (3) 1.25 × 1016 ÷ 2.5 × 1016 B+/cm2, showing thresholds in the estimated E g opt,B and N values as a function of ion dose for the B:PMMA studied. The ion-induced structural evolution towards formation of carbon nanostructures within these thresholds is suggested as explanation of experimental results, taking into account the possible carbonization in high-dose B:PMMA nanocomposite films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D. Fink, J.P. Biersack, J.T. Chen, M. Städele, K. Tjan, M. Behar, C.A. Olivieri, F.C. Zawislak, J. Appl. Phys. 58, 668 (1985)

    Article  Google Scholar 

  2. R.B. Guimaraes, M. Behar, R.P. Livi, J.P. De Souza. L. Amaral, F.C. Zawislak, D. Fink, J.P. Biersack, Nucl. Instr. Meth. Phys. Res. B 19/20, 882 (1987)

    Article  Google Scholar 

  3. D. Fink, M. Müller, U. Stettner, M. Behar, P.F.P. Fichtner, F.C. Zawislak, S. Koul, Nucl. Instr. Meth. Phys. Res. B 32, 180 (1988)

    Google Scholar 

  4. R.B. Guimaraes, L. Amaral, M. Behar, P.F.P. Fichtner, F.C. Zawislak, D. Fink, J. Appl. Phys. 63, 2083 (1988)

    Article  Google Scholar 

  5. B. Wasserman, G. Braunstein, M.S. Dresselhaus, G.E. Wnek, Mater. Res. Soc. Symp. Proc. 27, 423 (1983)

    Article  Google Scholar 

  6. E.H. Lee, G.R. Rao, L.K. Mansur, J. Mater. Res. 7, 1900 (1992)

    Article  Google Scholar 

  7. L.B. Bridwell, Solid State Phenom. 27, 163 (1992)

    Article  Google Scholar 

  8. E.H. Lee, G.R. Rao, M.B. Lewis, L.K. Mansur, Nucl. Instr. Meth. Phys. Res. B 74, 326 (1993)

    Article  Google Scholar 

  9. P.K. Goyal, V. Kumar, R. Gupta, S. Kumar, P. Kumar, D. Kanjilal, AIP Conf. Proc. 1349, 543 (2011)

    Article  Google Scholar 

  10. P.K. Goyal, V. Kumar, R. Gupta, S. Kumar, P. Kumar, D. Kanjilal, AIP Conf. Proc. 1393, 147 (2011)

    Article  Google Scholar 

  11. S. Arif, M.S. Rafique, F. Saleemi, R. Sagheer, F. Naab, O. Toader, A. Mahmood, R. Rashid, M. Mahmood, Nucl. Instr. Meth. Phys. Res. B 358, 236 (2015)

    Article  Google Scholar 

  12. L. Calcano, G. Compagnini, G. Foti, Nucl. Instr. Meth. Phys. Res. B 65, 413 (1992)

    Article  Google Scholar 

  13. V. Švorčik, I. Miček, V. Rybka, V. Hnatowicz, F. Černy, J. Mater. Res. 12, 1661 (1997)

    Article  Google Scholar 

  14. V. Švorčík, V. Rybka, V. Hnatowicz, K. Smetana, J. Mater. Sci. Mat. Med. 8, 435 (1997)

    Article  Google Scholar 

  15. V. Švorčík, E. Arenholz, V. Rybka, R. Öchsner, H. Ryssel, Nucl. Instr. Meth. Phys. Res. B 142, 349 (1998)

    Article  Google Scholar 

  16. L. Bačáková, K. Walachová, V. Švorčík, V. Hnatowicz, J. Biomater. Sci. Polymer Ed. 12, 817 (2001)

    Article  Google Scholar 

  17. V. Švorčík, P. Tomášová, B. Dvořánková, V. Hnatowicz, R. Ochsner, H. Ryssel, Nucl. Instr. Meth. Phys. Res. B 215, 366 (2004)

    Article  Google Scholar 

  18. V. Švorčik, V. Hnatowicz, P. Stopka, L. Bačáková, J. Heitze, R. Öchsner, H. Ryssel, Rad. Phys. Chem. 60, 89 (2001)

    Article  Google Scholar 

  19. P. Malinsky, A. Mackova, V. Hnatowicz, R.I. Khaibullin, V.F. Valeev, P. Slepicka, V. Svorcik, M. Slouf, V. Perina, Nucl. Instr. Meth. Phys. Res. B 272, 396 (2012)

    Article  Google Scholar 

  20. T. Kavetskyy, V. Tsmots, A. Kinomura, Y. Kobayashi, R. Suzuki, H.F.M. Mohamed, O. Šauša, V. Nuzhdin, V. Valeev, A.L. Stepanov, J. Phys. Chem. B 118, 4194 (2014)

    Article  Google Scholar 

  21. T. Kavetskyy, J. Nowak, J. Borc, J. Rusnák, O. Šauša, A.L. Stepanov, Spectrosc. Lett. 49, 5 (2016)

    Article  Google Scholar 

  22. T.S. Kavetskyy, A.L. Stepanov, Radiat Eff Mater (InTech, Rijeka, 2016), pp. 287–308

  23. D. Fink, W.H. Chung, R. Klett, A. Schmoldt, J. Cardoso, R. Montiel, M.H. Vazquez, L. Wang, F. Hosoi, H. Omichi, P. Goppelt-Langer, Radiat. Eff. Defects Solids 133, 193 (1995)

    Article  Google Scholar 

  24. R. Gupta, V. Kumar, P.K. Goyal, S. Kumar, Appl. Sur. Sci. 263, 334 (2012)

    Article  Google Scholar 

  25. P. Singh, S. Asad Ali, R. Kumar, Rad. Phys. Chem. 96, 181 (2014)

    Article  Google Scholar 

  26. T. Tsvetkova, S. Balabanov, L. Avramov, E. Borisova, I. Angelov, S. Sinning, L. Bischoff, Vacuum 83, S252 (2009)

    Article  Google Scholar 

  27. J. Wang, F. Zhu, B. Zhang, H. Liu, G. Jia, C. Liu, Appl. Sur. Sci. 261, 653 (2012)

    Article  Google Scholar 

  28. T.S. Kavetskyy, V.M. Tsmots, S.Ya.. Voloshanska, O. Šauša, V.I. Nuzhdin, V.F. Valeev, Y.N. Osin, A.L. Stepanov, Low Temp. Phys. 40, 747 (2014)

    Article  Google Scholar 

  29. F. Saito, T. Yotoriyama, I. Nishiyama, Y. Suzuki, A. Goto, Y. Nagashima, T. Hyodo, Phys. Chem. Chem. Phys. 16, 26991 (2014)

    Article  Google Scholar 

  30. F. Saito, I. Nishiyama, T. Hyodo, Mater. Lett. 66, 144 (2012)

    Article  Google Scholar 

  31. H.M. Zidan, A. El-Khodary, I.A. El-Sayed, H.I. El-Bohy, J. Appl. Pol. Sci. 117, 1416 (2010)

    Google Scholar 

  32. J. Tauc, R. Grigorovivi, A. Vancu, Phys. Status Solidi 15, 627 (1966)

    Article  Google Scholar 

  33. M.D. Mighad, H.M. Zidan, Curr. Appl. Phys. 6, 91 (2006)

    Article  Google Scholar 

  34. V. Ismayil, R.F. Ravindrachary, S.D. Bhajantri, B. Praveena, D. Poojary, P.K. Pujari Dutta, Polym. Degrad. Stab. 95, 1083 (2010)

    Article  Google Scholar 

  35. S. Zahedi, D. Dorranian, Opt. Rev. 20, 36 (2013)

    Article  Google Scholar 

  36. V. Švorčík, O. Lyutakov, I. Huttel, J. Mater. Sci.: Mater. Electron. 19, 363 (2008)

    Google Scholar 

  37. J. Robertson, E.P. O’Reilly, Phys. Rev. B 35, 2946 (1987)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. A. Kuczumow and Dr. J. Nowak from The John Paul II Catholic University of Lublin, Poland, for encouragement in this work and discussions. T. Kavetskyy acknowledges the MES of Ukraine (project No. 0116U004737). A.L. Stepanov thanks for the financial support from the RSF (project No. 14-13-00758) in Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Trzciński.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trzciński, M., Kavetskyy, T., Telbiz, G. et al. Optical characterization of nanocomposite polymer formed by ion implantation of boron. J Mater Sci: Mater Electron 28, 7115–7120 (2017). https://doi.org/10.1007/s10854-017-6523-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6523-4

Keywords

Navigation