Skip to main content
Log in

Evoking complex neuronal networks by stimulating a single neuron

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The responses of electrically coupled neuronal network to external stimulus injected on a single neuron are investigated. Stimulating the largest-degree neuron in the network, it is found that as the intensity of the stimulus increases, the network will be transiting from the resting to firing states and then restoring to the resting state, thereby showing a bounded firing region in the parameter space. Furthermore, it is found that as the coupling strength among the neurons decreases, the firing region is gradually expanded and, at the weak couplings, it could be separated into several disconnected subregions. By a simplified network model, we conduct a detailed analysis on the bifurcation diagram of the network dynamics in the two-dimensional parameter space spanned by stimulating intensity and coupling strength, and, by introducing a new coefficient named effective stimulus, explore the underlying mechanisms for the modified firing region. It is revealed that the coupling strength and stimulating intensity are equally important in evoking the network, but with different mechanisms. Specifically, the effective stimuli are shifted up globally by increasing the stimulating intensity, while are drawn closer by increasing the coupling strength. The dynamical responses of small-world and random complex networks to external stimulus are also investigated, which confirm the generality of the observed phenomena. The findings shed new lights on the collective behaviors of complex neuronal networks and might help our understandings on the recent experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kandel, E.R., Schwartz, J.H., Jessell, T.M., Siegelbaum, S.A., Hudspeth, A.J.: Principles of Neural Science. McGraw-Hill Medical, New York (2012)

    Google Scholar 

  2. Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. MIT Press, Cambridge (2007)

    Google Scholar 

  3. Reti, I.: Brain Stimulation: Methodologies and Interventions. Wiley, Hoboken (2015)

    Book  Google Scholar 

  4. Brecht, M., Schneider, M., Sakmann, B., Margrie, T.W.: Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex. Nature 427, 704–710 (2004)

    Article  Google Scholar 

  5. de la Prida, L.M., Huberfeld, G., Cohen, I., Miles, R.: Threshold behavior in the initiation of hippocampal population bursts. Neuron 49(1), 131–142 (2006)

    Article  Google Scholar 

  6. Houweling, A.R., Brecht, M.: Behavioural report of single neuron stimulation in somatosensory cortex. Nature 451(7174), 65–68 (2008)

    Article  Google Scholar 

  7. Morgan, R.J., Soltesz, I.: Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures. Proc. Natl. Acad. Sci. USA 105(16), 6179–6184 (2008)

    Article  Google Scholar 

  8. Li, C.Y., Poo, M.M., Dan, Y.: Burst spiking of a single cortical neuron modifies global brain state. Science 324(5927), 643–646 (2009)

    Article  Google Scholar 

  9. Bonifazi, P., Goldin, M., Picardo, M.A., Jorquera, I., Cattani, A., Bianconi, G., Represa, A., Ben-Ari, Y., Cossart, R.: GABAergic hub neurons orchestrate synchrony in developing hippocampal networks. Science 326(5958), 1419–1424 (2009)

    Article  Google Scholar 

  10. Luccioli, S., Ben-Jacob, E., Barzilai, A., Bonifazi, P., Torcini, A.: Clique of functional hubs orchestrates population bursts in developmentally regulated neural networks. PLoS Comput. Biol. 10(9), e1003823 (2014)

    Article  Google Scholar 

  11. Lau, P.M., Bi, G.Q.: Synaptic mechanisms of persistent reverberatory activity in neuronal networks. Proc. Natl. Acad. Sci. USA 102(29), 10333–10338 (2005)

    Article  Google Scholar 

  12. Zhao, Z., Jia, B., Gu, H.: Bifurcations and enhancement of neuronal firing induced by negative feedback. Nonlinear Dyn. 86(3), 1549–1560 (2016)

    Article  Google Scholar 

  13. Fontanini, A., Katz, D.B.: Behavioral states, network states, and sensory response variability. J. Neurophysiol. 100(3), 1160–1168 (2008)

    Article  Google Scholar 

  14. Landisman, C.E., Connors, B.W.: Long-term modulation of electrical synapses in the mammalian thalamus. Science 310(5755), 1809–1813 (2005)

    Article  Google Scholar 

  15. Kothmann, W.W., Trexler, E.B., Whitaker, C.M., Li, W., Massey, S.C., O’Brien, J.: Nonsynaptic NMDA receptors mediate activity-dependent plasticity of gap junctional coupling in the AII amacrine cell network. J. Neurosci. 32(20), 6747–6759 (2012)

    Article  Google Scholar 

  16. Connors, B.W., Long, M.A.: Electrical synapses in the mammalian brain. Annu. Rev. Neurosci. 27, 393–418 (2004)

    Article  Google Scholar 

  17. Sun, A., Lü, L., Li, C.: Synchronization of an uncertain small-world neuronal network based on modified sliding mode control technique. Nonlinear Dyn. 82(4), 1905–1912 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sun, H., Zhang, H., Wu, J.: Correlated scale-free network with community: Modeling and transportation dynamics. Nonlinear Dyn. 69(4), 20972104 (2012)

    Google Scholar 

  19. Yang, X.L., Hu, L.P., Sun, Z.K: How time-delayed coupling influences differential feedback control of bursting synchronization in modular neuronal network. Nonlinear Dyn. 86(3), 1797–1806 (2016)

  20. Zhang, J., Huang, S., Pang, S., Wang, M., Gao, S.: Optimizing calculations of coupling matrix in Hindmarsh–Rose neural network. Nonlinear Dyn. 84(3), 1303–1310 (2016)

    Article  MathSciNet  Google Scholar 

  21. Sporns, O.: Networks of the Brain. MIT Press, Cambridge (2010)

    MATH  Google Scholar 

  22. Eguíluz, V.M., Chialvo, D.R., Cecchi, G.A., Baliki, M., Apkarian, A.V.: Scale-free brain functional networks. Phys. Rev. Lett. 94, 018102 (2005)

    Article  Google Scholar 

  23. Sporns, O., Honey, C.J., Kötter, R.: Identification and classification of hubs in brain networks. PLoS One 2(10), e1049 (2007)

    Article  Google Scholar 

  24. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)

    Article  Google Scholar 

  25. Reigl, M., Alon, U., Chklovskii, D.B.: Search for computational modules in the C. elegans brain. BMC Biol. 2, 25 (2004)

    Article  Google Scholar 

  26. Sporns, O., Kötter, R.: Motifs in brain networks. PLoS Biol. 2(11), e369 (2004)

    Article  Google Scholar 

  27. Felleman, D.J., Van Essen, D.C.: Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1(1), 1–14 (1991)

    Article  Google Scholar 

  28. Hilgetag, C.C., Burns, G.A., O’Neill, M.A., Scannell, J.W., Young, M.P.: Hierarchical organization of macaque and cat cortical sensory systems explored with a novel network processor. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355(1393), 71–89 (2000)

    Article  Google Scholar 

  29. Buono, P.L., Golubitsky, M.: Models of central pattern generators for quadruped locomotion. I. Primary gaits. J. math. Biol. 42(4), 291–326 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Söhl, G., Maxeiner, S., Willecke, K.: Expression and functions of neuronal gap junctions. Nat. Rev. Neurosci. 6, 191 (2005)

    Article  Google Scholar 

  31. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35(1), 193–213 (1981)

    Article  Google Scholar 

  32. Hodgkin, A.L.: The local electric changes associated with repetitive action in a non-medullated axon. J. Physiol. (London) 107(2), 165–181 (1948)

  33. Gutkin, B.S., Ermentrout, G.B.: Dynamics of membrane excitability determine interspike interval variability: a link between spike generation mechanisms and cortical spike train statistics. Neural Comput. 10(5), 1047–1065 (1998)

    Article  Google Scholar 

  34. Agmon-Snir, H., Carr, C.E., Rinzel, J.: The role of dendrites in auditory coincidence detection. Nature 393(6682), 268–272 (1998)

    Article  Google Scholar 

  35. Stiefel, K.M., Englitz, B., Sejnowski, T.J.: Origin of intrinsic irregular firing in cortical interneurons. Proc. Natl. Acad. Sci. USA 110(19), 7886–7891 (2013)

    Article  MATH  Google Scholar 

  36. Tsumoto, K., Kitajima, H., Yoshinaga, T., Aihara, K., Kawakami, H.: Bifurcations in Morris-Lecar neuron model. Neurocomputing 69(4–6), 293–316 (2006)

    Article  Google Scholar 

  37. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  38. Bennett, M.V.L., Zukin, R.S.: Electrical coupling and neuronal synchronization in the mammalian brain. Neuron 41(4), 495–511 (2004)

    Article  Google Scholar 

  39. Erdös, P., Rényi, A.: On random graphs. Publ. Math. Debrecen 6, 290–297 (1959)

    MathSciNet  MATH  Google Scholar 

  40. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  41. Koukkari, W.L., Sothern, R.B.: Introducing Biological Rhythms. Springer, New York (2006)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under the Grant No. 11375109, and by the Fundamental Research Funds for the Central Universities under the Grant Nos. GK201601001 and GK20150-3027.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Wang, Y., Wang, H. et al. Evoking complex neuronal networks by stimulating a single neuron. Nonlinear Dyn 88, 2491–2501 (2017). https://doi.org/10.1007/s11071-017-3391-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3391-7

Keywords

Navigation