Skip to main content
Log in

Numerical modeling of percutaneous auricular vagus nerve stimulation: a realistic 3D model to evaluate sensitivity of neural activation to electrode position

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Objective

Percutaneous stimulation of the auricular branch of the vagus nerve (pVNS) by miniaturized needle electrodes in the auricle gained importance as a treatment for acute and chronic pain. The objective is to establish a realistic numerical model of pVNS and investigate the effects of stimulation waveform, electrodes’ depth, and electrodes’ position on nerve excitation threshold and the percentage of stimulated nerves.

Methods

Simulations were performed with Sim4Life. An electrostatic solver and neural tissue models were combined for electromagnetic and neural simulation. The numerical model consisted of a realistic high-resolution model of a human ear, blood vessels, nerves, and three needle electrodes.

Results

A novel 3D ear model was established, including blood vessels and nerves. The electric field distribution was extracted and evaluated. Maximum sensitivity to needles’ depth and displacement was evaluated to be 9.8 and 15.5% per 0.1 mm, respectively. Stimulation was most effective using biphasic compared to mono-phasic pulses.

Conclusion

The established model allows easy and quantitative evaluation of various stimulation setups, enabling optimization of pVNS in experimental settings. Results suggest a high sensitivity of pVNS to the electrodes’ position and depth, implying the need for precise electrode positioning. Validation of the model needs to be performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Groves D, Brown V (2005) Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects. Neurosci Biobehav Rev 29(3):493–500

    Article  PubMed  Google Scholar 

  2. De Ferrari G, Crijns H, Borggrefe M et al (2011) Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur Heart J 32(7):847–855

    Article  PubMed  Google Scholar 

  3. Ellrich J (2011) Transcutaneous vagus nerve stimulation. Eur Neurol Rev 6(4):254

    Article  Google Scholar 

  4. Kampusch S, Kaniusas E, Széles J (2013) New approaches in multi-punctual percutaneous stimulation of the auricular vagus nerve. In: Proceedings of the 6th international IEEE EMBS conference on neural engineering, pp 263–266

  5. Peuker E, Filler T (2002) The nerve supply of the human auricle. Clin Anat 15(1):35–37

    Article  PubMed  Google Scholar 

  6. Kaniusas E, Varoneckas G, Mahr B, Széles J (2011) Optic visualization of auricular nerves and blood vessels: optimisation and validation. IEEE Trans Instrum Meas 60(10):3253–3258

    Article  Google Scholar 

  7. Sator-Katzenschlager S, Széles J, Scharbert G, Michalek-Sauberer A, Kober A, Heinze G, Kozek-Langenecker S (2003) Electrical stimulation of auricular acupuncture points is more effective than conventional manual auricular acupuncture in chronic cervical pain: a pilot study. Anesth Anal 97(5):1469–1473

    Article  Google Scholar 

  8. Payrits T et al (2011) Vagal stimulation—a new possibility for conservative treatment of peripheral arterial occlusion disease. Zentralblatt für Chirurgie 136:431–435

    Article  CAS  PubMed  Google Scholar 

  9. Berthoud H, Neuhuber W (2000) Functional and chemical anatomy of the afferent vagal system. Auton Neurosci 85(1–3):1–17

    Article  CAS  PubMed  Google Scholar 

  10. Kaniusas E (2012) Biomedical signals and sensors I. Springer, Berlin

    Book  Google Scholar 

  11. Zamotrinsky A, Kondratiev B, de Jong J (2001) Vagal neurostimulation in patients with coronary artery disease. Auton Neurosci 88(1–2):109–116

    Article  CAS  PubMed  Google Scholar 

  12. Széles J, Litscher G (2004) Objectivation of cerebral effects with a new continuous electrical auricular stimulation technique for pain management. Neurol Res 26(7):797–800

    Article  PubMed  Google Scholar 

  13. Tracey K (2009) Reflex control of immunity. Nat Rev Immunol 9(6):418–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhao Y, He W, Jing X, Liu J, Rong P, Ben H et al (2012) Transcutaneous auricular vagus nerve stimulation protects endotoxemic rat from lipopolysaccharide-induced inflammation. Evid Based Complem Altern Med 2012:1–10

    Google Scholar 

  15. Shammas N (2007) Epidemiology, classification, and modifiable risk factors of peripheral arterial disease. Vasc Health Risk Manag 3(2):229–234

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gao X, Zhang S, Zhu B, Zhang H (2008) Investigation of specificity of auricular acupuncture points in regulation of autonomic function in anesthetized rats. Auton Neurosci 138(1–2):50–56

    Article  PubMed  Google Scholar 

  17. Miocinovic S (2006) Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation. J Neurophysiol 96(3):1569–1580

    Article  PubMed  Google Scholar 

  18. Schmidt C, van Rienen U (2012) Modeling the field distribution in deep brain stimulation: the influence of anisotropy of brain tissue. IEEE Trans Biomed Eng 59(6):1583–1592

    Article  PubMed  Google Scholar 

  19. Danner SM et al (2014) Potential distribution and nerve fiber responses in transcutaneous lumbosacral spinal cord stimulation. In: International conference on advancements of medicine and health care through technology; IFBME 44, pp 203–208

  20. Samoudi A, Vermeeren G, Tanghe E, Van Holen R, Martens L, Josephs W (2016) Numerically simulated exposure of children and adults to pulsed gradient fields in MRI. J Magn Reson Imaging 44:1360–1367

    Article  PubMed  Google Scholar 

  21. De Lucia M, Parker G, Embleton K, Newton J, Walsh V (2007) Diffusion tensor MRI-based estimation of the influence of brain tissue anisotropy on the effects of transcranial magnetic stimulation. Neuroimage 36(4):1159–1170

    Article  PubMed  Google Scholar 

  22. Lu M, Ueno S (2013) Calculating the induced electromagnetic fields in real human head by deep transcranial magnetic stimulation. Conf Proc IEEE Eng Med Biol Soc 2013:795–798

    PubMed  Google Scholar 

  23. Choi C, Lee Y, Tsou Y (2011) Modeling deep brain stimulation based on current steering scheme. IEEE Trans Magn 47(5):890–893

    Article  Google Scholar 

  24. Chaturvedi A, Foutz T, McIntyre C (2012) Current steering to activate targeted neural pathways during deep brain stimulation of the subthalamic region. Brain Stimul 5(3):369–377

    Article  PubMed  Google Scholar 

  25. Sim4Life, Zurich Med Tech. www.zurichmedtech.com/sim4life/. Visited on September 2016

  26. Neufeld E, Cassará A, Montanaro H, Kuster N, Kainz W (2016) Functionalized anatomical models for EM-neuron interaction modeling. Phys Med Biol 61(12):4390–4401

    Article  PubMed  PubMed Central  Google Scholar 

  27. Neufeld E, Vogiatzis Oikonomidis I, Ida Iacono M, Angelone L, Kainz W, Kuster N (2016) Investigation of assumptions underlying current safety guidelines on EM-induced nerve stimulation. Phys Med Biol 61(12):4466–4478

    Article  PubMed  PubMed Central  Google Scholar 

  28. Reilly J, Freeman V, Larkin W (1985) Sensory effects of transient electrical stimulation—evaluation with a neuroelectric model. IEEE Trans Biomed Eng 32(12):1001–1011

    Article  CAS  PubMed  Google Scholar 

  29. McNeal D (1976) Analysis of a model for excitation of myelinated nerve. IEEE Trans Biomed Eng 23(4):329–337

    Article  CAS  PubMed  Google Scholar 

  30. Santis V, Chen X, Laakso I, Hirata A (2015) An equivalent skin conductivity model for low-frequency magnetic field dosimetry. Biomed Phys Eng Express 1(1):1–10

    Article  Google Scholar 

  31. Tilotta F, Lazaroo B, Laujac M, Gaudy J (2009) A study of the vascularization of the auricle by dissection and diaphanization. Surg Radiol Anat 31(4):259–265

    Article  PubMed  Google Scholar 

  32. Alvord L, Farmer B (1997) Anatomy and orientation of the human external ear. J Am Acad Audiol 8(6):383–390

    CAS  PubMed  Google Scholar 

  33. Reilly J, Diamant A (2011) Electrostimulation-theory applications, and computational model. Artech House, Boston

    Google Scholar 

  34. Safi S, Ellrich J, Neuhuber W (2016) Myelinated axons in the auricular branch of the human vagus nerve. Anat Rec 299(9):1184–1191

    Article  Google Scholar 

  35. Sandby-Møller J, Poulsen T, Wulf H (2003) Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits. Acta Dermato-Venereol 83(6):410–413

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by COST Action BM1309 (COST EMF-MED) and the FWO G003415N project. E. Tanghe is a postdoctoral fellow of the Research Foundation-Flanders (FWO-V).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amine M. Samoudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samoudi, A.M., Kampusch, S., Tanghe, E. et al. Numerical modeling of percutaneous auricular vagus nerve stimulation: a realistic 3D model to evaluate sensitivity of neural activation to electrode position. Med Biol Eng Comput 55, 1763–1772 (2017). https://doi.org/10.1007/s11517-017-1629-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1629-7

Keywords

Navigation