Skip to main content
Log in

Carbonation of gypsum from wet flue gas desulfurization process: experiments and modeling

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this paper, waste gypsum from wet flue gas desulfurization (WFGD) mixed with NH3·H2O was applied for CO2 absorption in the solid-liquid-gas phase system. The effects of operation temperature, CO2 flow rates, and ammonia-to-gypsum ratio on carbonation process were discussed. Meanwhile, a model for CO2 absorption in the suspension of WFGD gypsum and ammonia was established. The results indicate that higher temperature favors the reaction, and WFGD gypsum conversion can be achieved above 90% even at lower ammonia-to-gypsum ratio, while CO2 conversion reaches 90% and ammonia utilization is up to 83.69%. The model fits well with the experimental results at various CO2 flow rates and predicts the concentration distribution of the main species, including CO2 absorbed, NH2COO, and HCO3 .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A, B :

Decbye–Hückel constants

CO2T :

Total CO2 concentration (mol L−1)

D :

Diffusion coefficient (m2 s−1)

e0 :

Unit charge (C)

F :

Faraday constant (C mol−1)

I :

Ionic strength (mol L−1)

K b :

Chemical equilibrium constant of ammonia hydrolysis reaction

K N :

Chemical equilibrium constant of CO2 absorption reaction

K 1 :

Chemical equilibrium constant of reaction (14*)

K sp :

Solubility product

k 1 :

Kinetics parameter of the elementary reaction (9*) (L mol s−1)

k OH :

Kinetics parameter of the elementary reaction (14*) (mol L s−1)

\( {m}_{0,\ {\mathrm{CaCO}}_3} \) :

Initial mass of calcium carbonate in the gypsum (g)

NH3T :

Total ammonia concentration (mol L−1)

p :

Ambient pressure (Pa)

\( {\mathrm{P}}_{{\mathrm{CaCO}}_3} \) :

Calcium carbonate content (%)

PC :

Carbon content (%)

\( {\mathrm{P}}_{{\mathrm{CaSO}}_4} \) :

Calcium sulfate content (%)

R :

Gas constant (J mol K−1)

R a :

Reaction rate of fast CO2 absorption (mol L s−1)

R d :

Reaction rate of gypsum dissolution (mol L s−1)

R h :

Reaction rate of ammonium carbamate hydrolysis (mol L s−1)

r a :

Linearized reaction rate of CO2 absorption (mol L s−1)

r d :

Linearized reaction rate of gypsum dissolution (mol L s−1)

r h :

Linearized reaction rate of ammonium carbamate hydrolysis (mol L s−1)

T :

Ambient temperature (K)

t :

Contact time (min)

\( {\mathrm{V}}_{{\mathrm{CO}}_2} \) :

Amount of CO2 uptake (mol)

v :

Flow rate (mL min−1)

y a, y b, y c, y d., y e :

Molar concentration of CO2, NH3, NH2COO, NH4 +, and HCO3 (mol L−1)

z :

Charge number

\( {\eta}_{{\mathrm{CO}}_2} \) :

CO2 conversion (%)

NH3(aq) :

Aqueous ammonia conversion (%)

η gyp :

Gypsum conversion (%)

γ :

The activity coefficients for ionics

ε :

Dielectric constants (F m−1)

References

  • Azdarpour A, Asadullah M, Junin R, Manan M, Hamidi H, Mohammadian E (2014) Direct carbonation of red gypsum to produce solid carbonates. Fuel Process Technol 126:429–434

    Article  CAS  Google Scholar 

  • Azdarpour A, Asadullah M, Junin R, Mohammadian E, Hamidi H, Daud ARM, Manan M (2015) Extraction of calcium from red gypsum for calcium carbonate production. Fuel Process Technol 130:12–19

    Article  CAS  Google Scholar 

  • Burnett WC, Schultz MK, Hull CD (1996) Radionuclide flow during the conversion of phosphogypsum to ammonium sulfate. J Environ Radioact 32:33–51

    Article  CAS  Google Scholar 

  • Cambridge University Press (2007) Intergovernmental Panel on Climate Change. Climate Change 2007: mitigation of climate change. Contribution of Working Group III to the Fourth, Assessment Report of the IPCC. New York. 2007

  • Derks PWJ, Kleingeld T, Aken CV, Hogendoorn JA, Versteeg GF (2006) Kinetics of absorption of carbon dioxide in aqueous piperazine solutions. Chem Eng Sci 61:6837–6854

    Article  CAS  Google Scholar 

  • Doucet FJ (2010) Effective CO2-specific sequestration capacity of steel slags and variability in their leaching behaviour in view of industrial mineral carbonation. Miner Eng 23:262–269

    Article  CAS  Google Scholar 

  • Electric Power Research Institute (2006) Agricultural uses of gypsum and other products from flue gas desulfurization (FGD) systems. EPRI, Palo Alto, CA. www.epri.com

  • Grant D, Jorgenson AK, Longhofer W (2016) How organizational and global factors condition the effects of energy efficiency on CO2 emission rebounds among the world's power plants. Energy Policy 94:89–93

    Article  CAS  Google Scholar 

  • He Q, Lee JM (2014) Additional market incentives for abatement: an analysis of flue-gas desulfurization by-products. Resour Energy Econ 36:370–393

    Article  Google Scholar 

  • Huijgen WJJ, Witkamp G-J, Comans RNJ (2006) Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process. Chem Eng Sci 61:4242–4251

    Article  CAS  Google Scholar 

  • Lawal A, Wang M, Stephenson P, Koumpouras G, Yeung H (2010) Dynamic modelling and analysis of post-combustion CO2 chemical absorption process for coal-fired power plants. Fuel 89:2791–2801

    Article  CAS  Google Scholar 

  • Lee MG, Kang D, Jo H, Park J (2016) Carbon dioxide utilization with carbonation using industrial waste-desulfurization gypsum and waste concrete. Journal of Material Cycles & Waste Management 18:407–412

    Article  CAS  Google Scholar 

  • Li X, Ge YF (1999) Modelling and simulation of carbonation process of ammoniacal brine. I kinetic model of carbon at ion reactions. Chem React Eng Technol 15:350–356 (In Chinese)

    CAS  Google Scholar 

  • Pasini R, Walker HW (2012) Estimating constituent release from FGD gypsum under different management scenarios. Fuel 95:190–196

    Article  CAS  Google Scholar 

  • Song K, Jang Y-N, Kim W, Lee MG, Shin D, Bang J-H, Jeon CW, Chae SC (2014) Factors affecting the precipitation of pure calcium carbonate during the direct aqueous carbonation of flue gas desulfurization gypsum. Energy 65:527–532

    Article  CAS  Google Scholar 

  • Tan Y, Nookuea W, Li H, Thorin E, Yan J (2016) Property impacts on carbon capture and storage (CCS) processes: a review. Energy Convers Manag 118:204–222

    Article  CAS  Google Scholar 

  • Versteeg GF, Swaalj WV (1988) Solubility and diffusivity of acid gases (carbon dioxide, nitrous oxide) in aqueous alkanolamine solutions. J Chem Eng Data 33:29–34

    Article  CAS  Google Scholar 

  • Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C (2011) Post-combustion CO2 capture with chemical absorption: a state-of-the-art review. Chem Eng Res Des 89:1609–1624

    Article  CAS  Google Scholar 

  • Zhang W, Wu S, Ren S, Zhang L, Li J (2015) The modeling and experimental studies on the diffusion coefficient of CO2 in saline water. Journal of CO2 Utilization 11:49–53

    Article  CAS  Google Scholar 

  • Zhao B, Su Y, Tao W, Li L, Peng Y (2012) Post-combustion CO2 capture by aqueous ammonia: a state-of-the-art review. International Journal of Greenhouse Gas Control 9:355–371

    Article  Google Scholar 

  • Zhao H, Li H, Bao W, Wang C, Li S, Lin W (2015) Experimental study of enhanced phosphogypsum carbonation with ammonia under increased CO2 pressure. Journal of CO2 Utilization 11:10–19

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Funds of China (grants no. 51678291 and no. 21207064) and Scientific Research Project of Environmental Protection Department of Jiangsu Province (2015015). Also, the authors thank Qing Lan Project of Jiangsu Province for funds provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyi Tan.

Additional information

Responsible editor: Bingcai Pan

Electronic supplementary material

ESM 1

(DOC 583 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, W., Zhang, Z., Li, H. et al. Carbonation of gypsum from wet flue gas desulfurization process: experiments and modeling. Environ Sci Pollut Res 24, 8602–8608 (2017). https://doi.org/10.1007/s11356-017-8480-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8480-0

Keywords

Navigation