Skip to main content

Advertisement

Log in

Effect of projected climate change on the hydrological regime of the Yangtze River Basin, China

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

The hydrological response to the potential future climate change in Yangtze River Basin (YRB), China, was assessed by using an ensemble of 54 climate change simulations. The Coupled Model Intercomparison Project 5 simulations under two new Representative Concentration Pathways (RCP) 4.5 and 8.5 emission scenarios were downscaled and used to drive the Variable Infiltration Capacity hydrological model. This study found that the range of temperature changes is homogeneous for almost the entire region, with an average annual increase of more than 2 °C under RCP4.5 and even more than 4 °C under RCP8.5 in the end of the twenty first century. The warmest period (June–July–August) of the year would experience lower changes than the colder ones (December–January–February). Overall, mean precipitation was projected to increase slightly in YRB, with large dispersion among different global climate models, especially during the dry season months. These phenomena lead to changes in future streamflow for three mainstream hydrological stations (Cuntan, Yichang, and Datong), with slightly increasing annual average streamflows, especially at the end of twenty first century. Compared with the percentage change of mean flow, the high flow shows (90th percentile on the probability of no exceedance) a higher increasing trend and the low flow (10th percentile) shows a decreasing trend or lower increasing trend. The maximum daily discharges with 5, 10, 15, and 30-year return periods show an increasing trend in most sub-basins in the future. Therefore, extreme hydrological events (e.g., floods and droughts) will increase significantly, although the annual mean streamflow shows insignificant change. The findings of this study would provide scientific supports to implement the integrated adaptive water resource management for climate change at regional scales in the YRB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–232. doi:10.1038/nature01092

    Article  CAS  Google Scholar 

  • Andreasson J, Bergstrom S, Carlsson B, Graham LP, Lindstrom G (2004) Hydrological change—climate change impact simulations for Sweden. Ambio 33(4–5):228–234

    Article  Google Scholar 

  • Arora VK, Scinocca JF, Boer GJ et al (2011) Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys Res Lett 38(5):L05805. doi:10.1029/2010GL046270

    Article  Google Scholar 

  • Baek H, Lee J, Lee H et al (2013) Climate change in the 21st century simulated by HadGEM2-AO under representative concentration pathways. Asia-Pac J Atmos Sci 49(5):603–618. doi:10.1007/s13143-013-0053-7

    Article  Google Scholar 

  • Bellucci A, Gualdi S, Masina S et al (2013) Decadal climate predictions with a coupled OAGCM initialized with oceanic reanalyses. Clim Dyn 40(5–6):1483–1497. doi:10.1007/s00382-012-1468-z

    Article  Google Scholar 

  • Bennett KE, Werner AT, Schnorbus M (2012) Uncertainties in hydrologic and climate change impact analyses in headwater basins of British Columbia. J Clim 25(17):5711–5730. doi:10.1175/JCLI-D-11-00417.1

    Article  Google Scholar 

  • Bi D, Dix M, Marsland S et al (2013) The ACCESS coupled model: description, control climate and evaluation. Aust Meteorol Oceanogr J 63:41–64

    Article  Google Scholar 

  • Blöschl G, Montanari A (2010) Climate change impacts-throwing the dice? Hydrol Process 24(3):374–381. doi:10.1002/hyp.7574

    Google Scholar 

  • Bosshard T, Carambia M, Goergen K et al (2013) Quantifying uncertainty sources in an ensemble of hydrological climate-impact projections. Water Resour Res 49(3):1523–1536. doi:10.1029/2011WR011533

    Article  Google Scholar 

  • Bravo J, Collischonn W, Da Paz A, Allasia D, Domecq F (2014) Impact of projected climate change on hydrologic regime of the Upper Paraguay River basin. Clim Change 127(1):27–41. doi:10.1007/s10584-013-0816-2

    Article  Google Scholar 

  • Chen J, Wu X, Finlayson BL et al (2014) Variability and trend in the hydrology of the Yangtze River, China: annual precipitation and runoff. J Hydrol 513:403–412. doi:10.1016/j.jhydrol.2014.03.044

    Article  Google Scholar 

  • Chen YD, Zhang Q, Xiao M, Singh VP, Zhang S (2016) Probabilistic forecasting of seasonal droughts in the Pearl River basin, China. Stoch Env Res Risk Assess 30(7):2031–2040. doi:10.1007/s00477-015-1174-6

    Article  Google Scholar 

  • Collins WJ, Bellouin N, Doutriaux-Boucher M et al (2011) Development and evaluation of an Earth-System model -HadGEM2. Geosci Model Dev 4(4):1051–1075. doi:10.5194/gmd-4-1051-2011

    Article  Google Scholar 

  • Dai Z, Du J, Li J, Li W, Chen J (2008) Runoff characteristics of the Changjiang River during 2006: effect of extreme drought and the impounding of the Three Gorges Dam. Geophys Res Lett 35(7):L07406. doi:10.1029/2008GL033456

    Article  Google Scholar 

  • Dai Z, Chu A, Du J, Stive M, Hong Y (2010) Assessment of extreme drought and human interference on baseflow of the Yangtze River. Hydrol Process 24(6):749–757. doi:10.1002/hyp.7505

    Article  Google Scholar 

  • Duan QY, Gupta VK, Sorooshian S (1993) Shuffled complex evolution approach for effective and efficient global minimization. J Optim Theory Appl 76(3):501–521. doi:10.1007/BF00939380

    Article  Google Scholar 

  • Dufresne JL, Foujols MA, Denvil S et al (2013) Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim Dyn 40(9–10):2123–2165. doi:10.1007/s00382-012-1636-1

    Article  Google Scholar 

  • Dunne JP, John JG, Adcroft AJ et al (2012) GFDL’s ESM2 global coupled climate-carbon earth system models. Part I: physical formulation and baseline simulation characteristics. J Clim 25(19):6646–6665. doi:10.1175/JCLI-D-11-00560.1

    Article  Google Scholar 

  • Elsner M, Cuo L, Voisin N et al (2010) Implications of 21st century climate change for the hydrology of Washington State. Clim Change 102(1–2):225–260. doi:10.1007/s10584-010-9855-0

    Article  Google Scholar 

  • Gent PR, Danabasoglu G, Donner LJ et al (2011) The community climate system model version 4. J Clim 24(19):4973–4991. doi:10.1175/2011JCLI4083.1

    Article  Google Scholar 

  • Giorgetta MA, Jungclaus J, Reick CH et al (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J Adv Model Earth Syst 5(3):572–597. doi:10.1002/jame.20038

    Article  Google Scholar 

  • Gu H, Wang G, Yu Z, Mei R (2012) Assessing future climate changes and extreme indicators in east and south Asia using the RegCM4 regional climate model. Clim Change 114(2):301–317. doi:10.1007/s10584-012-0411-y

    Article  Google Scholar 

  • Gu H, Yu Z, Wang G et al (2015a) Impact of climate change on hydrological extremes in the Yangtze River Basin, China. Stoch Env Res Risk Assess 29(3):693–707. doi:10.1007/s00477-014-0957-5

    Article  Google Scholar 

  • Gu H, Yu Z, Wang J et al (2015b) Assessing CMIP5 general circulation model simulations of precipitation and temperature over China. Int J Climatol 35(9):2431–2440. doi:10.1002/joc.4152

    Article  Google Scholar 

  • Guo S, Guo J, Zhang J, Chen H (2009) VIC distributed hydrological model to predict climate change impact in the Hanjiang basin. Sci China Ser E: Technol Sci 52(11):3234–3239. doi:10.1007/s11431-009-0355-2

    Article  Google Scholar 

  • Hagedorn R, Doblas-reyes FJ, Palmer TN (2005) The rationale behind the success of multi-model ensembles in seasonal forecasting—I. Basic concept. Tellus A 57(3):219–233. doi:10.1111/j.1600-0870.2005.00103.x

    Google Scholar 

  • Hamlet AF, Lettenmaier DP (1999) Effects of climate change on hydrology and water resources in the Columbia River Basin. JAWRA J Am Water Resour Assoc 35(6):1597–1623. doi:10.1111/j.1752-1688.1999.tb04240.x

    Article  Google Scholar 

  • Han L, Xu Y, Yang L, Deng X (2015) Changing structure of precipitation evolution during 1957–2013 in Yangtze River Delta, China. Stoch Env Res Risk Assess 29(8):2201–2212. doi:10.1007/s00477-015-1034-4

    Article  Google Scholar 

  • Hidalgo HG, Amador JA, Alfaro EJ, Quesada B (2013) Hydrological climate change projections for Central America. J Hydrol 495:94–112. doi:10.1016/j.jhydrol.2013.05.004

    Article  Google Scholar 

  • Hirabayashi Y, Kanae S, Emori S, Oki T, Kimoto M (2008) Global projections of changing risks of floods and droughts in a changing climate. Hydrol Sci J/J des Sci Hydrol 53(4):754–772

    Article  Google Scholar 

  • IPCC (2013) Climate Change 2013: the physical basis. Contribution of Working Group 1 to the Fifth Assessment Report of the IPCC. Cambridge University Press, New York

  • Ji D, Wang L, Feng J et al (2014) Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1. Geosci Model Dev 7(5):2039–2064. doi:10.5194/gmd-7-2039-2014

    Article  Google Scholar 

  • Kay AL, Davies HN, Bell VA, Jones RG (2009) Comparison of uncertainty sources for climate change impacts: flood frequency in England. Clim Change 92(1–2):41–63. doi:10.1007/s10584-008-9471-4

    Article  Google Scholar 

  • Kerkhoven E, Gan T (2011) Differences and sensitivities in potential hydrologic impact of climate change to regional-scale Athabasca and Fraser River basins of the leeward and windward sides of the Canadian Rocky Mountains respectively. Clim Change 106(4):583–607. doi:10.1007/s10584-010-9958-7

    Article  CAS  Google Scholar 

  • Lespinas F, Ludwig W, Heussner S (2014) Hydrological and climatic uncertainties associated with modeling the impact of climate change on water resources of small Mediterranean coastal rivers. J Hydrol 511:403–422. doi:10.1016/j.jhydrol.2014.01.033

    Article  Google Scholar 

  • Liang X, Lettennmaier DP, Wood EF, Burges SJ (1994) A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J Geophys Res 99(D7):14415–14428. doi:10.1029/94JD00483

    Article  Google Scholar 

  • Lindsay K, Bonan GB, Doney SC et al (2014) Preindustrial-Control and Twentieth-Century Carbon Cycle Experiments with the Earth System Model CESM1(BGC). J Clim 27(24):8981–9005. doi:10.1175/JCLI-D-12-00565.1

    Article  Google Scholar 

  • Liu JP, Xu KH, Li AC et al (2007) Flux and fate of Yangtze River sediment delivered to the East China Sea. Geomorphology 85(3–4):208–224. doi:10.1016/j.geomorph.2006.03.023

    Article  Google Scholar 

  • Lu XX (2004) Vulnerability of water discharge of large Chinese rivers to environmental changes: an overview. Reg Environ Change 4(4):182–191. doi:10.1007/s10113-004-0080-0

    Article  Google Scholar 

  • Manzini E, Cagnazzo C, Fogli PG, Bellucci A, Müller WA (2012) Stratosphere-troposphere coupling at inter-decadal time scales: implications for the North Atlantic Ocean. Geophys Res Lett 39(5):L05801. doi:10.1029/2011GL050771

    Article  Google Scholar 

  • Meehl GA, Washington WM, Arblaster JM et al (2013) Climate Change Projections in CESM1(CAM5) Compared to CCSM4. J Clim 26(17):6287–6308. doi:10.1175/JCLI-D-12-00572.1

    Article  Google Scholar 

  • Meinshausen M, Smith SJ, Calvin K et al (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109(1–2):213–241. doi:10.1007/s10584-011-0156-z

    Article  CAS  Google Scholar 

  • Middelkoop H, Daamen K, Gellens D et al (2001) Impact of climate change on hydrological regimes and water resources management in the rhine basin. Clim Change 49(1–2):105–128

    Article  CAS  Google Scholar 

  • Mora DE, Campozano L, Cisneros F, Wyseure G, Willems P (2014) Climate changes of hydrometeorological and hydrological extremes in the Paute basin, Ecuadorean Andes. Hydrol Earth Syst Sci 18(2):631–648. doi:10.5194/hess-18-631-2014

    Article  Google Scholar 

  • Morrison J, Quick MC, Foreman MGG (2002) Climate change in the Fraser River watershed: flow and temperature projections. J Hydrol 263(1–4):230–244. doi:10.1016/S0022-1694(02)00065-3

    Article  Google Scholar 

  • Najafi MR, Moradkhani H, Jung IW (2011) Assessing the uncertainties of hydrologic model selection in climate change impact studies. Hydrol Proces 25(18):2814–2826. doi:10.1002/hyp.8043

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models 1: a discussion of priciples. J Hydrol 10:282–290. doi:10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Nijssen B, O’Donnell GM, Hamlet AF, Lettenmaier DP (2001a) Hydrologic sensitivity of global rivers to climate change. Clim Change 50(1–2):143–175

    Article  CAS  Google Scholar 

  • Nijssen B, Schnur R, Lettenmaier DP (2001b) Global retrospective estimation of soil moisture using the variable infiltration capacity land surface model, 1980–1993. J Clim 14(8):1790–1808. doi:10.1175/1520-0442(2001)014

    Article  Google Scholar 

  • Nóbrega MT, Collischonn W, Tucci CEM, Paz AR (2011) Uncertainty in climate change impacts on water resources in the Rio Grande Basin, Brazil. Hydrol Earth Syst Sci 15(2):585–595. doi:10.5194/hess-15-585-2011

    Article  Google Scholar 

  • Pierce DW, Barnett TP, Hidalgo HG et al (2008) Attribution of declining western U.S. snowpack to human effects. J Clim 21(23):6425–6444. doi:10.1175/2008JCLI2405.1

    Article  Google Scholar 

  • Prudhomme C, Davies H (2009) Assessing uncertainties in climate change impact analyses on the river flow regimes in the UK. Part 2: future climate. Clim Change 93(1–2):197–222. doi:10.1007/s10584-008-9461-6

    Article  Google Scholar 

  • Qiao F, Song Z, Bao Y et al (2013) Development and evaluation of an Earth System Model with surface gravity waves. J Geophys Res Oceans 118(9):4514–4524. doi:10.1002/jgrc.20327

    Article  Google Scholar 

  • Reichler T, Kim J (2008) How well do coupled models simulate today’s climate? Bull Am Meteorol Soc 89(3):303–311. doi:10.1175/BAMS-89-3-303

    Article  Google Scholar 

  • Rotstayn LD, Jeffrey SJ, Collier MA et al (2012) Aerosol- and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region: a study using single-forcing climate simulations. Atmos Chem Phys 12(14):6377–6404. doi:10.5194/acp-12-6377-2012

    Article  CAS  Google Scholar 

  • Salathé EP (2005) Downscaling simulations of future global climate with application to hydrologic modelling. Int J Climatol 25(4):419–436. doi:10.1002/joc.1125

    Article  Google Scholar 

  • Schmidt GA, Kelley M, Nazarenko L et al (2014) Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J Adv Model Earth Syst 6(1):141–184. doi:10.1002/2013MS000265

    Article  Google Scholar 

  • Schnorbus MA, Cannon AJ (2014) Statistical emulation of streamflow projections from a distributed hydrological model: application to CMIP3 and CMIP5 climate projections for British Columbia, Canada. Water Resour Res 50(11):8907–8926. doi:10.1002/2014WR015279

    Article  Google Scholar 

  • Schnorbus M, Werner A, Bennett K (2014) Impacts of climate change in three hydrologic regimes in British Columbia, Canada. Hydrol Proces 28(3):1170–1189. doi:10.1002/hyp.9661

    Article  Google Scholar 

  • Serrat-Capdevila A, Valdés JB, Pérez JG et al (2007) Modeling climate change impacts—and uncertainty—on the hydrology of a riparian system: the San Pedro Basin (Arizona/Sonora). J Hydrol 347(1–2):48–66. doi:10.1016/j.jhydrol.2007.08.028

    Article  Google Scholar 

  • Sheffield J, Goteti G, Wen F, Wood EF (2004) A simulated soil moisture based drought analysis for the United States. J Geophys Res Atmos 109(D24):D24108. doi:10.1029/2004JD005182

    Article  Google Scholar 

  • Steinschneider S, Wi S, Brown C (2015) The integrated effects of climate and hydrologic uncertainty on future flood risk assessments. Hydrol Proces 29(12):2823–2839. doi:10.1002/hyp.10409

    Article  Google Scholar 

  • Surfleet CG, Tullos D (2013) Uncertainty in hydrologic modelling for estimating hydrologic response due to climate change (Santiam River, Oregon). Hydrol Proces 27(25):3560–3576. doi:10.1002/hyp.9485

    Article  Google Scholar 

  • Vano JA, Udall B, Cayan DR et al (2014) Understanding uncertainties in future Colorado River streamflow. Bull Am Meteorol Soc 95(1):59–78. doi:10.1175/BAMS-D-12-00228.1

    Article  Google Scholar 

  • Velazquez JA, Schmid J, Ricard S et al (2013) An ensemble approach to assess hydrological models’ contribution to uncertainties in the analysis of climate change impact on water resources. Hydrol Earth Syst Sci 17(2):565–578. doi:10.5194/hess-17-565-2013

    Article  Google Scholar 

  • Volodin EM, Dianskii NA, Gusev AV (2010) Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Izv Atmos Ocean Phys 46(4):414–431. doi:10.1134/S000143381004002X

    Article  Google Scholar 

  • Wang H, Saito Y, Zhang Y et al (2011) Recent changes of sediment flux to the western Pacific Ocean from major rivers in East and Southeast Asia. Earth-Sci Rev 108(1–2):80–100. doi:10.1016/j.earscirev.2011.06.003

    Article  Google Scholar 

  • Wang X, Yang T, Shao Q et al (2012) Statistical downscaling of extremes of precipitation and temperature and construction of their future scenarios in an elevated and cold zone. Stoch Environ Res Risk Assess 26(3):405–418. doi:10.1007/s00477-011-0535-z

    Article  Google Scholar 

  • Wang W, Wei J, Shao Q et al (2015a) Spatial and temporal variations in hydro-climatic variables and runoff in response to climate change in the Luanhe River basin, China. Stoch Environ Res Risk Assess 29(4):1117–1133. doi:10.1007/s00477-014-1003-3

    Article  Google Scholar 

  • Wang X, Yang T, Krysanova V, Yu Z (2015b) Assessing the impact of climate change on flood in an alpine catchment using multiple hydrological models. Stoch Environ Res Risk Assess 29(8):2143–2158. doi:10.1007/s00477-015-1062-0

    Article  Google Scholar 

  • Watanabe M, Suzuki T, O’Ishi R et al (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23(23):6312–6335. doi:10.1175/2010JCLI3679.1

    Article  Google Scholar 

  • Watanabe S, Hajima T, Sudo K et al (2011) MIROC-ESM 2010: model description and basic results of CMIP5-20c3 m experiments. Geosci Model Dev 4(4):845–872. doi:10.5194/gmd-4-845-2011

    Article  Google Scholar 

  • Wood AW, Leung LR, Sridhar V, Lettenmaier DP (2004) Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Clim Change 62(1–3):189–216. doi:10.1023/B:CLIM.0000013685.99609.9e

    Article  Google Scholar 

  • Wu T, Li W, Ji J et al (2013) Global carbon budgets simulated by the Beijing Climate Center Climate System Model for the last century. J Geophys Res: Atmos 118(10):4326–4347. doi:10.1002/jgrd.50320

    CAS  Google Scholar 

  • Wu T, Song L, Li W et al (2014) An overview of BCC climate system model development and application for climate change studies. J Meteorol Res 28(1):34–56. doi:10.1007/s13351-014-3041-7

    Google Scholar 

  • Xu CY, Widen E, Halldin S (2005) Modelling hydrological consequences of climate change-progress and challenges. Adv Atmos Sci 22(6):789–797. doi:10.1007/BF02918679

    Article  Google Scholar 

  • Yang SL, Liu Z, Dai SB et al. (2010) Temporal variations in water resources in the Yangtze River (Changjiang) over the Industrial Period based on reconstruction of missing monthly discharges. Water Resour Res. doi:10.1029/2009WR008589

  • Yu Z, Pollard D, Cheng L (2006) On continental-scale hydrologic simulations with a coupled hydrologic model. J Hydrol 331(1–2):110–124. doi:10.1016/j.jhydrol.2006.05.021

    Article  Google Scholar 

  • Yukimoto S, Adachi Y, Hosaka M, et al. (2012) A new global climate model of the Meteorological Research Institute: MRI-CGCM3-model description and basic performance. J Meteorol Soc Jpn. doi:10.2151/jmsj.2012-A02

  • Zhang ZS, Nisancioglu K, Bentsen M et al (2012) Pre-industrial and mid-Pliocene simulations with NorESM-L. Geosci Model Dev 5(2):523–533. doi:10.5194/gmd-5-523-2012

    Article  CAS  Google Scholar 

  • Zhang Q, Singh VP, Xu C, Chen X (2013) Abrupt behaviours of streamflow and sediment load variations of the Yangtze River basin, China. Hydrol Proces 27(3):444–452. doi:10.1002/hyp.9278

    Article  Google Scholar 

  • Zhang D, Hong H, Zhang Q, Li X (2015) Attribution of the changes in annual streamflow in the Yangtze River Basin over the past 146 years. Theor Appl Climatol 119(1–2):323–332. doi:10.1007/s00704-014-1121-3

    Article  Google Scholar 

  • Zhou SQ, Liang X, Chen J, Gong P (2004) An assessment of the VIC-3L hydrological model for the Yangtze River basin based on remote sensing: a case study of the Baohe River basin. Can J Remote Sens 30(5):840–853. doi:10.5589/m04-031

    Article  Google Scholar 

  • Zong Y, Chen X (2000) The 1998 flood on the Yangtze, China. Nat Hazard 22(2):165–184. doi:10.1023/A:1008119805106

    Article  Google Scholar 

Download references

Acknowledegments

This work was supported by the National Key R&D Program of China (Grant Nos. 2016YFC0402706, 2016YFC0402710), the National Natural Science Foundation of China (Nos. 41501015, 41323001, 51539003, 51421006, 41471457), the Special Fund of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (No. 20145027312), the Fundamental Research Funds for the Central Universities (2016B00114). The authors acknowledge the World Climate Research Programme’s Working Group on Coupled Model, which is responsible for CMIP, and thank the climate modeling groups for producing and making available their model output. The authors would like to thank the editor and three anonymous referees for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanghe Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Gu, H., Wang, J. et al. Effect of projected climate change on the hydrological regime of the Yangtze River Basin, China. Stoch Environ Res Risk Assess 32, 1–16 (2018). https://doi.org/10.1007/s00477-017-1391-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-017-1391-2

Keywords

Navigation