Skip to main content
Log in

An equivalent circuit model and biasing effects over the gain and bandwidth of waveguide avalanche photodetectors (WG-APDs)

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Waveguide photodetectors (WG-PDs) are a promising candidate to overcome the trade-off between the quantum efficiency and bandwidth in conventional photodetectors. In this paper, complete physics and circuit models of waveguide-separated absorption grading charge multiplication-avalanche photodetector (WG-SAGCM-APD) are presented. In this model, the effects of the biasing, doping and the thicknesses of the different layers of the photodetectors, the parasitic of the photodetector and the velocities of photogenerated carriers over the multiplication gain and the bandwidth of the photodetectors are studied and taken into consideration. The results obtained the presented model of WG-SAGCM-APD are compared with published experimental results and a better agreement than with a previous model is obtained. The presented circuit model is generic and can be applied to different structures of WG-APDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alping, A.: Waveguide PIN photodetectors: theoretical analysis and design criteria. IEE Proc. Optoelectron. 136, 177–182 (1989)

    Article  Google Scholar 

  • Anselm, K.A., Nie, H., Lenox, C., Yuan, P., Kinsey, G., Campbell, J.C., Streetman, B.G.: Performance of thin separate absorption, charge, and multiplication avalanche photodiodes. IEEE J. Quantum Electron. 34, 482–490 (1998)

    Article  ADS  Google Scholar 

  • Bandyopadhy, A.., Deen, M.J.: Photodetector for Optical Fiber Communications. In: Nalwa, H.S. (ed.) Photodetectors and Fiber Optics, pp. 307–368. Academic Press, NewYork (2001)

    Google Scholar 

  • Bin, L., Xiaohong, Y., Weihong, Y., Qianqian, L., Rong, C., Qin, H.: A high-speed avalanche photodiode. J. Semicond. 35(7), 074009-1–074009-5 (2014)

    ADS  Google Scholar 

  • Capasso, F.: Physics of avalanche photodiodes. In: Tsang, W.T. (ed.) Semiconductors and Semimetals, vol. 22D. Academic Press, NewYork (1985)

    Google Scholar 

  • Deen, M.J., Basu, P.K.: Silicon Photonics—Fundamentals and Devices. Wiley, New York (2012)

    Book  Google Scholar 

  • El-Batawy, Y.M., Deen, M.J.: Modeling of waveguide–separated absorption charge multiplication–avalanche photodetector (WG-SACM-APD). Proc. SPIE 5577, 229–237 (2004a)

    Article  ADS  Google Scholar 

  • El-Batawy, Y.M., Deen, M.J.: Modeling of mushroom waveguide photodetector (Mushroom-WGPD). J. Vac. Sci. Technol. 22, 811–815 (2004b)

    Article  ADS  Google Scholar 

  • El-Batawy, Y.M., Deen, M.J.: Analysis and circuit modeling of waveguide-separated absorption charge multiplication-avalanche photodetector (WG-SACM-APD). IEEE Trans. Electron Devices 52(3), 335–344 (2005a)

    Article  ADS  Google Scholar 

  • El-Batawy, Y.M., Deen, M.J.: Analysis, circuit modeling, and optimization of mushroom waveguide photodetector (mushroom-WGPD). J. Lightwave Technol. 23, 423–431 (2005b)

    Article  ADS  Google Scholar 

  • El-Batawy, Y.M., Youssef, S.: Biasing effects on the characteristics and the optimization of mushroom waveguide photodetectors (WGPDs). In: Proceedings of the SPIE 9233, International Symposium on Photonics and Optoelectronics, August 21 (2014)

  • Goh, Y.L., Massey, D.J., Marshall, A.R.J., Ng, J.S., Tan, C.H., Ng, W.K., Rees, G.J., Hopkinson, M., David, J.P.R., Jones, S.K.: Avalanche multiplication in InAlAs. IEEE Trans. Electron Devices 54(1), 11–16 (2007)

    Article  ADS  Google Scholar 

  • Kato, K., Halta, S., Kozen, A., Yoshida, J., Kawano, K.: High efficiency waveguide InGaAs PIN photodiode with bandwidth of over 40 GHz. IEEE Photonics Technol. Lett. 3, 473–474 (1991)

    Article  ADS  Google Scholar 

  • Kato, K.: Ultrawide-band/high-frequency photodetectors. IEEE Trans. Microw. Theory Tech. 47, 1265–1281 (1999)

    Article  ADS  Google Scholar 

  • Kinsey, G.S., Campbell, J.C., Dentai, A.G.: Waveguide avalanche photodiode operating at 1.55 \(\mu \)m with a gain-bandwidth product of 320 GHz. IEEE Photonics Technol. Lett. 13(8), 842–844 (2001)

    Article  ADS  Google Scholar 

  • Kinsey, G.S., Hansing, C.C., Holmes Jr., A.L., Streetman, B.G., Campbell, J.C., Dentai, A.G.: Waveguide In0.53Ga0.47As–In0.52Al0.48As avalanche photodiode. IEEE Photonics Technol. Lett. 12, 416–418 (2000)

    Article  ADS  Google Scholar 

  • Kumar, S., Deen, M.J.: Fiber Optic Communications: Fundamentals and Applications. Wiley, New York (2014)

    Book  Google Scholar 

  • Makita, K., Nakata, T., Shiba, K., Kakeuchi, T.: 40 Gbps waveguide photodiode. NEC J. Adv. Tech. 2(3), 234–240 (2005)

    Google Scholar 

  • Marshall, A.R.J., Ker, P.J., Krysa, A., David, J.P.R., Tan, C.H.: High speed InAs electron avalanche photodiodes overcome the conventional gain-bandwidth product limit. Opt. Exp. 19(23), 23341–23349 (2011)

    Article  ADS  Google Scholar 

  • Massey, D.J., David, J.P.R., Rees, G.J.: Temperature dependence of impact ionization in submicrometer silicon devices. IEEE Trans. Electron Devices 53(9), 2328–2334 (2006)

    Article  ADS  Google Scholar 

  • Saleh, M.A., Hayat, M.M., Saleh, B.E.A., Teich, M.C.: Dead-space-based theory correctly predicts excess noise factor for thin GaAs and AlGaAs avalanche photodiodes. IEEE Trans. Electron Devices 47, 625–633 (2000)

    Article  ADS  Google Scholar 

  • Salmanpour, A., Sheikhi, M.H., Zarifkar, A., Berahman, M.: A novel equivalent circuit model for waveguide-separated absorption charge multiplication-avalanche photodetector (WG-SACMAPD). Optik 124, 6154–6158 (2013)

    Article  ADS  Google Scholar 

  • Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer, New York (1984)

    Book  Google Scholar 

  • Shiba, K., Nakata, T., Takeuchi, T., Sasaki, T., Makita, K.: 10 Gbit/s asymmetric waveguide APD with high sensitivity of −30 dBm. Electron. Lett. 42(20), 1177–1178 (2006)

    Article  Google Scholar 

  • Shiba, K., Nakata, T., Takeuchi, T., Kasahara, K., Makita, K.: Theoretical and experimental study on waveguide avalanche photodiodes with an undepleted absorption layer for 25-Gb/s operation. J. Lightwave Technol. 29(2), 153–161 (2011)

    Article  ADS  Google Scholar 

  • Wu, W., Hawkins, A.R., Bowers, J.E.: Frequency response of avalanche photodetectors with separate absorption and multiplication layers. J. Lightwave Technol. 14, 2778–2785 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasser M. El-Batawy.

Appendix

Appendix

The Generation \(G_{0}\) in the absorption layer is:

$$\begin{aligned} G_{0}= & {} \frac{P_{i}}{h\nu }.\eta \end{aligned}$$
(19)
$$\begin{aligned} \eta= & {} K(1-R)(1-\exp (-\alpha \Gamma L) \end{aligned}$$
(20)

where \(\eta \) is the quantum efficiency as expressed in Alping (1989) that depend on K (coupling efficiency), R (reflectivity of the absorption layer), \(\Gamma \)(confinement factor of the absorption layer), and the L (length of the WGPD). The time response of the primary electrons \(N_{P}(t)\):

$$\begin{aligned} N_{P}(t)= & {} G_{0}\left( u(t)-u\left( t-\frac{X_{g2}}{V_{g2n}}-\frac{X_{c}}{V_{cn}}-\frac{X_{m}}{V_{mn}}\right) \right) \\&+G_{0}\left( \frac{X_{a}+V_{an}\left( \frac{X_{g2}}{V_{g2n}}-\frac{X_{c}}{V_{cn}}-\frac{X_{m}}{V_{mn}}\right) -Van\mathrm {.}t}{Xa}\right) \\&\quad \cdot \left[ u\left( t-\frac{X_{g2}}{V_{g2n}}-\frac{X_{c}}{V_{cn}}-\frac{X_{m}}{V_{mn}}\right) \right. \\&\quad -\left. u\left( t-\frac{X_{g2}}{V_{g2n}}-\frac{X_{c}}{V_{cn}}-\frac{X_{m}}{V_{mn}}-\frac{X_{a}}{V_{an}}\right) \right] \end{aligned}$$
(21)

similarly, the time response of the the primary holes \(P_{P}(t)\) can be calculated.

The time response of the secondary electrons \(N_{s}(t)\) in the first case of the \(X_{a}>\left( X_{m}-W_{d}\right) \)

$$\begin{aligned} N_{s}(t)= & {} G_{0}(M_{e}-1)\cdot \left( \frac{\exp \left( -\frac{t}{(M_{e}-1)\tau _{n})}\right) }{(M_{e}-1)\tau _{n})}\right) \\&\quad \cdot \left\{ \left[ \left( \frac{V_{an}t-V_{an}\left( \frac{X_{g2}}{V_{g2n}}+\frac{X_{c}}{V_{cn}}+\frac{W_{d}}{V_{mn}}\right) }{Xa}\right) \right. \right. \\&\quad \cdot \left( u\left( t-\frac{X_{g2}}{V_{g2n}}-\frac{X_{c}}{V_{cn}}-\frac{W_{d}}{V_{mn}}\right) \right. \\&-\left. \left. u\left( t-\frac{X_{g2}}{V_{g2n}}-\frac{X_{c}}{V_{cn}}-\frac{X_{m}}{V_{mn}}\right) \right) \right] \\&+\frac{X_{m}-W_{d}}{X_{a}}.\left[ u\left( t-\frac{X_{g2}}{V_{g2n}}-\frac{X_{c}}{V_{cn}}-\frac{X_{m}}{V_{mn}}\right) \right. \\&-\left. u\left( t-\frac{X_{g2}}{V_{g2n}}-\frac{X_{c}}{V_{cn}}-\frac{X_{a}}{V_{an}}-\frac{W_{d}}{V_{mn}}\right) \right] \\&+\left[ \left( \frac{X_{a}+V_{an}\left( \frac{X_{g2}}{V_{g2n}}+\frac{X_{c}}{V_{cn}}+\frac{X_{m}}{V_{mn}}\right) -Van\mathrm {.}t}{Xa}\right) \right. \\&\quad \cdot \left( u\left( t-\frac{X_{g2}}{V_{g2n}}-\frac{X_{c}}{V_{cn}}-\frac{W_{d}}{V_{mn}}-\frac{X_{a}}{V_{an}}\right) \right. \\&-\left. \left. \left. u\left( t-\frac{X_{g2}}{V_{g2n}}-\frac{X_{c}}{V_{cn}}-\frac{X_{m}}{V_{mn}}-\frac{X_{a}}{V_{an}}\right) \right) \right] \right\} \end{aligned}$$
(22)

similarly, the time response of the secondary holes \(P_{s}(t)\) can be calculated. Where \(V_{jn}\) and \(V_{jp}\) are the velocity of the electrons and the holes in layer j, respectively. Similarly, the secondary electrons \(N_{s}(t)\) can be calculated in the second case of \(X_{a}<\left( X_{m}-W_{d}\right) \), while the secondary holes equation\(P_{s}(t)\) is still the same in the first case.

The frequency response of the primary holes \(P_{P}(\omega )\) and primary electrons \(N_{P}(\omega )\) are calculated by applying a Fourier transform on their time response:

$$\begin{aligned} P_{P}(\omega )= & {} \frac{G_{0}}{j\omega }+\frac{G_{0}V_{ap}}{x_{a}\omega ^{2}}\left[ \exp \left( \frac{-j\omega X_{g1}}{V_{g1p}}\right) \right. \\&\qquad -\left. \exp \left( -j\omega \left( \frac{X_{g1}}{V_{g1p}}+\frac{X_{a}}{V_{ap}}\right) \right) \right] \end{aligned}$$
(23)
$$\begin{aligned} N_{P}(\omega )= \frac{G_{0}}{j\omega } +\frac{G_{0}V_{an}}{x_{a}\omega ^{2}}\left[ \exp \left( -j\omega \left(\frac{X_{g2}}{V_{g2n}}+\frac{X_{m}}{V_{mn}}+\frac{X_{c}}{V_{cn}}\right) \right) - \exp \left( -j\omega \left( \frac{X_{g2}}{V_{g2n}}+\frac{X_{m}}{V_{mn}}+\frac{X_{c}}{V_{cn}}+\frac{X_{a}}{V_{an}}\right) \right) \right] \end{aligned}$$
(24)

Similarly, the frequency response of the secondary holes \(P_{S}\left( \omega \right) \) and electrons \(N_{S}\left( \omega \right) \) are calculated by applying a Fourier transform on their time response:

$$\begin{aligned} P_{S}\left( \omega \right)= & {} \frac{G_{0}(M_{e}-1)V_{an}}{\left( 1+j\omega \tau _{n}(M_{e}-1)\right) x_{a}\omega ^{2}} \\&\quad \cdot \left\{ \exp \left[ -j\omega \left( \frac{Xg2}{V_{g2n}}+\frac{Xa}{V_{an}}+\frac{Xc}{V_{cn}}+\frac{W_{d}}{V_{mn}}\right) \right] \right. \\&-\exp \left[ -j\omega \left( \frac{Xg2}{V_{g2n}}+\frac{W_{d}}{V_{mn}}+\frac{Xc}{V_{cn}}\right) \right] \\&+\exp \left[ -j\omega \left( \frac{Xg2}{V_{g2n}}+\frac{W_{d}}{V_{mn}}+\frac{Xc}{V_{cn}}+\frac{W_{d}}{V_{mp}}\right. \right. \\&\quad +\left. \left. \frac{Xc}{V_{cp}}+\frac{Xg2}{V_{g2p}}+\frac{Xa}{V_{ap}}+\frac{Xg1}{V_{g1p}}\right) \right] \\&-\exp \left[ -j\omega \left( \frac{Xg2}{V_{g2n}}+\frac{W_{d}}{V_{mn}}+\frac{Xc}{V_{cn}}+\frac{W_{d}}{V_{mp}}\right. \right. \\&\quad +\left. \left. \left. \frac{Xc}{V_{cp}}+\frac{Xg2}{V_{g2p}}+\frac{Xa}{V_{ap}}+\frac{Xg1}{V_{g1p}}+\frac{Xa}{V_{an}}\right) \right] \right\} \end{aligned}$$
(25)
$$\begin{aligned} N_{S}\left( \omega \right)= & {} \frac{G_{0}(M_{e}-1)}{1+j\omega \tau _{n}(M_{e}-1)} \\&\quad \cdot \left\{ \frac{-V_{an}}{x_{a}\omega ^{2}}\exp \left[ -j\omega \left( \frac{Xg2}{V_{g2n}}+\frac{Xc}{V_{cn}}+\frac{W_{d}}{V_{mn}}\right) \right] \right. \\&\quad +\,\frac{1}{j\omega X_{a}}\left[ 1-\frac{V_{an}}{V_{mn}}\right] \left( X_{m}-W_{d}\right) \left( \exp \left[ -j\omega \left( \frac{Xg2}{V_{g2n}}\right. \right. \right. \\&\quad +\,\left. \left. \frac{Xc}{V_{cn}}+\frac{X_{m}}{V_{mn}}\right) \right] \\&-\left. \exp \left[ -j\omega \left( \frac{Xg2}{V_{g2n}}+\frac{Xc}{V_{cn}}+\frac{Xa}{V_{an}}+\frac{W_{d}}{V_{mn}}\right) \right] \right) \\&+\frac{V_{an}}{x_{a}\omega ^{2}}\left( \exp \left[ -j\omega \left( \frac{Xg2}{V_{g2n}}+\frac{Xc}{V_{cn}}+\frac{X_{m}}{V_{mn}}\right) \right] \right. \\&+\left. \exp \left[ -j\omega \left( \frac{Xg2}{V_{g2n}}+\frac{Xc}{V_{cn}}+\frac{Xa}{V_{an}}+\frac{W_{d}}{V_{mn}}\right) \right] \right) \\&-\left. \frac{V_{an}}{x_{a}\omega ^{2}}\exp \left[ -j\omega \left( \frac{Xg2}{V_{g2n}}+\frac{Xc}{V_{cn}}+\frac{X_{m}}{V_{mn}}+\frac{Xa}{V_{an}}\right) \right] \right\} \end{aligned}$$
(26)

Similarly, in the second case of \(X_{a}<\left( X_{m}-W_{d}\right) \), the secondary electrons \(N_{s}(\omega )\) can be calculated by applying a Fourier transform on its time response:

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elmahdy, A., El-Batawy, Y.M. & Deen, M.J. An equivalent circuit model and biasing effects over the gain and bandwidth of waveguide avalanche photodetectors (WG-APDs). Opt Quant Electron 49, 103 (2017). https://doi.org/10.1007/s11082-017-0913-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-0913-y

Keywords

Navigation