Skip to main content
Log in

Effects of Temperature and Strain Rate on Solid-/Liquid-Phase Flow Behavior of 9Cr18 Steel During Thixoforging

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

A thixoforging process of the 9Cr18 steel was conducted in a designed setup, and a kind of multi-diameter component was fabricated. The effects of the forming temperature and the strain rate on the solid-/liquid-phase flow behavior were discussed. The results showed that functional gradient properties of the 9Cr18 steel could be obtained after thixoforging. Changes of microstructure along radial direction could be obtained. Solid austenite was retained after fast cooling, and the liquid film enriched in alloying elements was extruded outside to form a dendrite skin layer. As temperature increased, more molten liquid formed during thixoforging. A heterogeneous flow phenomenon was activated as free liquid channels were formed. The macro-separation of solid and liquid phases was critical for the formation of functional gradient properties. Above 1300 °C, full dendrite skin layer could be formed. The strain rate affected the thixotropic property via influencing the deformation time of thixoforging. In the presence of lower strain rates, there was more time for the flow of liquid metal, which was the key to the extension of the thixotropic stage. High temperatures and low strain rates contributed to the formation of full skin layer for the designed specimen. The average thickness of skin layer for current specimen could be over 1000 μm when thixoforged at 1340 °C and under a strain rate of 0.02 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M.C. Flemings, Metall. Trans. A 22, 957 (1991)

    Article  Google Scholar 

  2. R.B. Song, Y.L. Kang, A.M. Zhao, J. Mater. Proc. Technol. 198, 291 (2008)

    Article  Google Scholar 

  3. M. Kiuchi, R. Kopp, CIRP Ann.-Manuf. Technol. 51, 653 (2002)

    Article  Google Scholar 

  4. Y. Meng, S. Sugiyama, M. Soltanpour, J. Yanagimoto, J. Mater. Process. Technol. 213, 426 (2013)

    Article  Google Scholar 

  5. S.P. Midson, Solid State Phenoma 217–218, 487 (2014)

    Article  Google Scholar 

  6. R.G. Guan, Y.F. Shen, Z.Y. Zhao, R.D.K. Misra, Sci. Rep. 6, 23154 (2016)

    Article  Google Scholar 

  7. Y. Zhang, G.H. Wu, W.C. Liu, L. Zhang, S. Pang, W.J. Ding, Mater. Des. 67, 1 (2015)

    Article  Google Scholar 

  8. A. Bolouri, J.W. Bae, C.G. Kang, Mater. Sci. Eng., A 562, 1 (2013)

    Article  Google Scholar 

  9. J. Dutkiewicz, Ł. Rogal, K. Sołek, A. Mitura, Int. J. Mater. Forum 2, 753 (2009)

    Article  Google Scholar 

  10. E. Becker, V. Favier, R. Bigot, P. Cezard, L. Langlois, J. Mater. Proc. Technol. 210, 1482 (2010)

    Article  Google Scholar 

  11. G.C. Gu, R. Pesci, L. Langlois, E. Becker, R. Bigot, M.X. Guo, Acta Mater. 66, 118 (2014)

    Article  Google Scholar 

  12. S. Muenstermann, K. Uibel, T. Tonnesen, R. Telle, J. Mater. Process. Technol. 209, 3640 (2009)

    Article  Google Scholar 

  13. C.G. Kang, J.S. Choi, K.H. Kim, J. Mater. Process. Technol. 88, 159 (1999)

    Article  Google Scholar 

  14. X. Luo, Y.Z. Liu, B. Wang, Acta Metall. Sin. (Engl. Lett.) 28, 1305 (2015)

    Article  Google Scholar 

  15. M. Payandeh, A.E.W. Jarfors, M. Wessen, Solid State Phenoma 217–218, 67 (2014)

    Article  Google Scholar 

  16. C.Q. Zhao, R.B. Song, Mater. Des. 59, 502 (2014)

    Article  Google Scholar 

  17. Y.J. Wang, R.B. Song, Y.P. Li, Mater. Des. 86, 41 (2015)

    Article  Google Scholar 

  18. G.C. Gu, R. Pesci, L. Langlois, E. Becker, R. Bigot, J. Mater. Process. Technol. 216, 178 (2015)

    Article  Google Scholar 

  19. J.R. Yang, T.H. Yu, C.H. Wang, Mater. Sci. Eng., A 438–440, 276 (2006)

    Google Scholar 

  20. W. Puttgen, B. Hallstedt, W. Bleck, P.J. Uggowitzer, Acta Mater. 55, 1033 (2007)

    Article  Google Scholar 

  21. J. Fonseca, C.O. Sullivan, T. Nagira, H. Yasuda, C.M. Gourlay, Acta Mater. 61, 4169 (2013)

    Article  Google Scholar 

  22. T.Y. Liu, H.V. Atkinson, P. Kapranos, D.H. Kirkwood, S.C. Hogg, Metall. Trans. A 34, 1545 (2003)

    Article  Google Scholar 

  23. N. Poolthong, P. Qui, H. Nomura, Sci. Technol. Adv. Mater. 4, 481 (2003)

    Article  Google Scholar 

  24. R.G. Guan, Z.Y. Zhao, X. Wang, C.G. Dai, C.M. Liu, Acta Metall. Sin. (Engl. Lett.) 26, 293 (2013)

    Article  Google Scholar 

  25. K. Hu, A.B. Phillion, D.M. Maijer, S.L. Cockfroft, Scr. Mater. 60, 427 (2009)

    Article  Google Scholar 

Download references

Acknowledgement

The research was supported by the National Natural Science Foundation of China (No. 51175036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren-Bo Song.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YJ., Song, RB., Li, YP. et al. Effects of Temperature and Strain Rate on Solid-/Liquid-Phase Flow Behavior of 9Cr18 Steel During Thixoforging. Acta Metall. Sin. (Engl. Lett.) 30, 567–575 (2017). https://doi.org/10.1007/s40195-017-0544-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-017-0544-0

Keywords

Navigation