Skip to main content
Log in

A New Stable Algorithm for Fractional Navier–Stokes Equation in Polar Coordinate

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper presents a new approximate method based on operational matrices of fractional integrations and differentiations for fractional Navier–Stokes equation in polar coordinate system using Legendre scaling functions as a basis. Convergence analysis as well as error analysis of the proposed methods is given. Numerical stability of the method is shown. Numerical examples are given to show the effectiveness of the proposed method. Results are compared with existing analytical methods to show the accuracy of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Baeumer, B., Meerschaert, M.M., Benson, D.A., Wheatcraft, S.W.: Subordinate advection–dispersion equation for contaminant transport. Water Resour. Res. 37, 1543–1550 (2001)

    Article  Google Scholar 

  2. Chaurasia, V.B.L., Kumar, D.: Solution of the time fractional Navie–Stokes equation. Gen. Math. Notes 4(2), 49–59 (2011)

    Google Scholar 

  3. Colombeau, J.F.: New Generalized Functions and Multiplication of Distributions. North Holland, Amsterdam (1984)

    MATH  Google Scholar 

  4. Colombeau, J.F.: New generalized functions and multiplication of distributions: a graduate course, application to theoretical and numerical solutions of partial differential equations. (Lyon) (1993)

  5. Diethelm, K., Ford, N.J., Freed, A.D., Luchko, Y.: Algorithms for fractional calculus: a selection of numerical methods. Comput. Methods. Appl. Mech. Eng. 194, 743–773 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. El-Sayed, A., Salem, A.: On the generalised Navier–Stokes equations. Appl. Math. Comput. 156(1), 287–293 (2005)

    Google Scholar 

  7. Fu, Z.-J., Chen, W., Yang, H.-T.: Boundary particle method for Laplace transformed time fractional diffusion equations. J. Comput. Phys. 235(15), 52–66 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fu, Z.-J., Chen, W., Ling, L.: Method of approximate particular solutions for constant- and variable-order fractional diffusion models. Eng. Anal. Bound. Elem. 57, 37–46 (2015)

    Article  MathSciNet  Google Scholar 

  9. Ganji, Z.Z., Ganji, D.D., Ganji, A.D., Rostamian, M.: Analytical solution of time-fractional Navier–Stokes equation in polar coordinate by homotopy perturbation method (2008). doi:10.1002/num.20420

  10. Gorenflo, R., Mainardi, F., Scalas, E., Raberto, M.: Fractional calculus and continuous-time finance III : the diffusion limit. In: Kohlmann M., Tang S. (eds.) Mathematical Finance. Trends in Mathematics, pp. 171–180. Birkhäuser, Basel (2001)

  11. Heydari, M.H., Hooshmandasl, M.R., Maalek Ghaini, F.M., Fereidouni, F.: Two-dimensional Legendre wavelets for solving fractional Poisson equation with Dirichlet boundary conditions. Eng. Anal. Bound. Elem. 37, 1331–1338 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hilfer, R.: Application of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  13. Huang, F., Liu, F.: The fundamental solution of the space–time fractional advection–dispersion equation. J. Appl. Math. Comput. 18, 339–350 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kazem, S., Abbasbandy, S., Kumar, S.: Fractional order Legendre functions for solving fractional-order differential equations. Appl. Math. Model. 37, 5498–5510 (2013)

    Article  MathSciNet  Google Scholar 

  15. Kumar, S., Kumar, D., Abbasbandy, S., Rashidi, M.M.: Analytical solution of fractional Navier–Stokes equation by using modified Laplace decomposition method. Ain Shams Eng. J. 5, 569–574 (2014)

    Article  Google Scholar 

  16. Kumar, D., Singh, J., Kumar, S.: A fractional model of Navier–Stokes equation arising in unsteady flow of a viscous fluid. J. Assoc. Arab Univ. Basic Appl. Sci. 17, 14–19 (2015)

    Google Scholar 

  17. Lakestani, M., Dehghan, M., Pakchin, S.I.: The construction of operational matrix of fractional derivatives using B-spline functions. Commun. Nonlinear Sci. Numer. Sci. 17, 1149–1162 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lin, Y., Jiang, W.: Approximate solution of the fractional advection–dispersion equation. Comput. Phys. Commun. 181, 557–561 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Meerschaaert, M., Benson, D.A., Scheffler, H.P., Baeumer, B.: Stochastic solution of space–time fractional diffusion equation. Phys. Rev. E 65, 1103–1106 (2002)

    Article  MathSciNet  Google Scholar 

  20. Miller, K., Ross, B.: An Introduction to Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  21. Momani, S., Odibat, Z.: Analytical solution of a time-fractional Navier–Stokes equation by Adomian decomposition method. Appl. Math. Comput. 177, 488–494 (2006)

    MATH  MathSciNet  Google Scholar 

  22. Oberguggenberger, M.: Multiplication of Distributions and Applications to PDEs. Pittman Research Notes in Mathematics, 259. Longman, Harlow (1992)

  23. Pang, G., Chen, W., Fu, Z.: Space-fractional advection–dispersion equations by the Kansa method. J. Comput. Phys. 293, 280–296 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  24. Roberto, M., Scalas, E., Mainardi, F.: Waiting-times and returns in high frequency financial data: an empirical study. Phys. A 314, 749–755 (2002)

    Article  MATH  Google Scholar 

  25. Ragab, A.A., Hemida, K.M., Mohamed, M.S., Abd El Salam, M.A.: Solution of time-fractional Navier-Stokes equation by using homotopy analysis method. Gen. Math. Notes 13, 13–21 (2012)

    Google Scholar 

  26. Sabatelli, L., Keating, S., Dudley, J., Richmond, P.: Waiting time distributions in financial markets. Eur. Phys. J. B 27, 273–275 (2002)

    MathSciNet  Google Scholar 

  27. Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B., Wheatcraft, S.W.: Eulerian derivation of the fractional-dispersion equation. J. Contam. Hydrol. 48, 69–88 (2001)

    Article  Google Scholar 

  28. Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Multi scaling fractional advection–dispersion equation and their solutions. Water Resour. Res. 39, 1022–1032 (2003)

    Google Scholar 

  29. Singh, H.: A new numerical algorithm for fractional model of Bloch equation in nuclear magnetic resonance. Alex. Eng. J. (2016). doi:10.1016/j.aej.2016.06.032

    Google Scholar 

  30. Singh, C., Singh, H., Singh, V.K., Singh, O.P.: Fractional order operational matrix methods for fractional singular integro-differential equation. Appl. Math. Model. (2016). doi:10.1016/j.apm.2016.08.011

    MATH  MathSciNet  Google Scholar 

  31. Wang, L., Ma, Y., Meng, Z.: Haar wavelet method for solving fractional partial differential equations numerically. Appl. Math. Comput. 227, 66–76 (2014)

    MATH  MathSciNet  Google Scholar 

  32. West, B., Bologna, M., Grigolini, P.: Physics of Fractal Operators. Springer, New York (2003)

    Book  Google Scholar 

  33. Wu, J.L.: A wavelet operational method for solving fractional partial differential equations numerically. Appl. Math. Comput. 214, 31–40 (2009)

    MATH  MathSciNet  Google Scholar 

  34. Yousefi, S.A., Behroozifar, M., Dehghan, M.: The operational matrices of Bernstein polynomials for solving the parabolic equation subject to the specification of the mass. J. Comput. Appl. Math. 235, 5272–5283 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  35. Zaslavsky, G.: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, Oxford (2005)

    MATH  Google Scholar 

Download references

Acknowledgements

The author is very grateful to the referees for their constructive comments and suggestions for the improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harendra Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, H. A New Stable Algorithm for Fractional Navier–Stokes Equation in Polar Coordinate. Int. J. Appl. Comput. Math 3, 3705–3722 (2017). https://doi.org/10.1007/s40819-017-0323-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-017-0323-7

Keywords

Navigation