Skip to main content

Advertisement

Log in

Anti-diabetic Potential of Silver Nanoparticles Synthesized with Argyreia nervosa Leaf Extract High Synergistic Antibacterial Activity with Standard Antibiotics Against Foodborne Bacteria

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The current investigation highlighted a novel cost-effective green synthesis of silver nanoparticles (AgNPs) using Argyreia nervosa leaves extract (ANE) as a potential reducing and capping agent. Surface plasmon resonance confirmed the formation of AgNPs with maximum absorbance at λ max = 435 nm. FTIR revealed the involvement of biological macromolecules of ANE in the synthesis and stabilization of AgNPs. HRTEM images showed that the size of the spherical AgNPs ranged between 5 and 40 nm with average particle size of about 15 nm. The ANE-AgNPs showed inhibition activity against carbohydrate digestive enzymes α-amylase and α-glucosidase, with EC50 of 55.5 and 51.7 µg/mL, respectively, indicating its antidiabetic potential. The in vitro antioxidant activity of ANE-AgNPs was evaluated in terms of ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) and DPPH (1,1-diphenyl-2-picrylhydrazyl) free radicals scavenging assays with IC50 value of 44.3 and 55.9 µg/mL, respectively. The AgNPs displayed strong antibacterial activity against foodborne bacteria with zone of inhibition 16.0 and 12.5 mm for Escherichia coli and Staphylococcus aureus, respectively, and also exhibited strong synergistic antibacterial activity together with standard antibiotics. The biological activity in terms of antioxidant, antidiabetic and antibacterial potential could be useful in various bio-applications such as cosmetics, food, and biomedical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. C. Roco and W. S. Bainbridge (2005). J. Nanopart. Res. 7, 1–13.

    Article  Google Scholar 

  2. Y. Min, J. M. Caster, M. J. Eblan, and A. Z. Wang (2015). Chem. Rev. 115, 11147–11190.

    Article  CAS  Google Scholar 

  3. G. Benelli (2016). Parasitol. Res. 115, 23–34.

    Article  Google Scholar 

  4. G. Benelli (2016). Enzyme Microb. Technol. 95, 58–68.

    Article  CAS  Google Scholar 

  5. G. Benelli, R. Pavela, F. Maggi, R. Petrelli, and M. Nicoletti (2017). J. Clust. Sci.. doi:10.1007/s10876-016-1131-7.

    Google Scholar 

  6. K. Elangovan, D. Elumalai, S. Anupriya, R. Shenbhagaraman, P. K. Kaleena, and K. Murugesan (2015). J. Photochem. Photobiol. B 151, 118–124.

    Article  CAS  Google Scholar 

  7. P. Raveendran, J. Fu, and S. L. Wallen (2006). Green Chem. 8, 34–38.

    Article  CAS  Google Scholar 

  8. S. Ahmed, M. Ahmad, B. L. Swami, and S. Ikram (2016). J. Adv. Res. 7, 17–28.

    Article  CAS  Google Scholar 

  9. P. Velmurugan, M. Cho, S. S. Lim, S. K. Seo, H. Myung, K. S. Bang, S. Sivakumar, K. M. Cho, and B. T. Oh (2015). Mater. Lett. 138, 272–275.

    Article  CAS  Google Scholar 

  10. K. Jyoti, M. Baunthiyal, and A. Singh (2016). J. Radiat. Res. Appl. Sci. 9, 217–227.

    Article  CAS  Google Scholar 

  11. S. R. Vijayan, P. Santhiyagu, R. Ramasamy, P. Arivalagan, G. Kumar, K. Ethiraj, and B. R. Ramaswamy (2016). Enzyme Microb. Technol. 95, 45–57.

    Article  CAS  Google Scholar 

  12. J. L. López-Miranda, M. Vázquez, N. Fletes, R. Esparza, and G. Rosas (2016). Mater. Lett. 176, 285–289.

    Article  Google Scholar 

  13. P. D. Shankar, S. Shobana, I. Karuppusamy, A. Pugazhendhi, V. S. Ramkumar, S. Arvindnarayan, and G. Kumar (2016). Enzyme Microb. Technol. 95, 28–44.

    Article  CAS  Google Scholar 

  14. S. Iravani (2011). Green Chem. 13, 2638–2650.

    Article  CAS  Google Scholar 

  15. B. Ajitha, Y. A. K. Reddy, and P. S. Reddy (2014). Spectrochim. Acta Part A 121, 164–172.

    Article  CAS  Google Scholar 

  16. T. Varadavenkatesan, R. Selvaraj, and R. Vinayagam (2016). J. Mol. Liq. 221, 1063–1070.

    Article  CAS  Google Scholar 

  17. L. Lin, W. Wang, J. Huang, Q. Li, D. Sun, X. Yang, H. Wang, and N. He (2010). Chem. Eng. J. 162, 852–858.

    Article  CAS  Google Scholar 

  18. R. Veerasamy, T. Z. Xin, S. Gunasagaran, T. F. W. Xiang, E. F. C. Yang, N. Jeyakumar, and S. A. Dhanaraj (2011). J. Saudi Chem. Soc. 15, 113–120.

    Article  CAS  Google Scholar 

  19. S. M. Roopan, S. Rohit, G. Madhumitha, A. Abdul Rahuman, C. Kamaraj, A. Bharathi, and T. V. Surendra (2012). Ind. Crops Prod. 43, 631–635.

    Article  Google Scholar 

  20. K. Murugan, D. Dinesh, P. J. Kumar, C. Panneerselvam, J. Subramaniam, P. Madhiyazhagan, U. Suresh, M. Nicoletti, A. A. Alarfaj, M. A. Munusamy, A. Higuchi, H. Mehlhorn, and G. Benelli (2015). Parasitol. Res. 114, 4645–4654.

    Article  Google Scholar 

  21. J. Subramaniam, K. Murugan, C. Panneerselvam, K. Kovendan, P. Madhiyazhagan, P. M. Kumar, D. Dinesh, B. Chandramohan, U. Suresh, M. Nicoletti, A. Higuchi, J. S. Hwang, S. Kumar, A. A. Alarfaj, M. A. Munusamy, R. H. Messing, and G. Benelli (2015). Environ. Sci. Pollut. Res. 22, 20067–20083.

    Article  CAS  Google Scholar 

  22. J. Subramaniam, K. Murugan, C. Panneerselvam, K. Kovendan, P. Madhiyazhagan, D. Dinesh, P. M. Kumar, B. Chandramohan, U. Suresh, R. Rajaganesh, M. S. Alsalhi, S. Devanesan, M. Nicoletti, A. Canale, and G. Benelli (2016). Environ. Sci. Pollut. Res. 23, 7543–7558.

    Article  CAS  Google Scholar 

  23. C. Panneerselvam, K. Murugan, M. Roni, A. T. Aziz, U. Suresh, R. Rajaganesh, P. Madhiyazhagan, J. Subramaniam, D. Dinesh, M. Nicoletti, A. Higuchi, A. A. Alarfaj, M. A. Munusamy, S. Kumar, N. Desneux, and G. Benelli (2016). Parasitol. Res. 115, 997–1013.

    Article  Google Scholar 

  24. D. Dinesh, K. Murugan, P. Madhiyazhagan, C. Panneerselvam, P. M. Kumar, M. Nicoletti, W. Jiang, G. Benelli, B. Chandramohan, and U. Suresh (2015). Parasitol. Res. 114, 1519–1529.

    Article  Google Scholar 

  25. K. Murugan, P. Aruna, C. Panneerselvam, P. Madhiyazhagan, M. Paulpandi, J. Subramaniam, R. Rajaganesh, H. Wei, M. S. Alsalhi, S. Devanesan, M. Nicoletti, B. Syuhei, A. Canale, and G. Benelli (2015). Parasitol. Res. 115, 651–662.

    Article  Google Scholar 

  26. R. Rajaganesh, K. Murugan, C. Panneerselvam, S. Jayashanthini, A. T. Aziz, M. Roni, U. Suresh, S. Trivedi, H. Rehman, A. Higuchi, M. Nicoletti, and G. Benelli (2016). Res. Vet. Sci. 109, 40–51.

    Article  CAS  Google Scholar 

  27. B. S. Atiyeh, M. Costagliola, S. N. Hayek, and S. A. Dibo (2007). Burns 33, 139–148.

    Article  Google Scholar 

  28. A. Z. Mirza and F. A. Siddiqui (2014). Int. Nano Lett. 4, 94.

    Article  Google Scholar 

  29. J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, and J. T. Ramirez (2005). Nanotechnology 16, 2346–2353.

    Article  CAS  Google Scholar 

  30. L. Guariguata, D. R. Whiting, I. Hambleton, J. Beagley, U. Linnenkamp, and J. E. Shaw (2014). Diabetes Res. Clin. Pract. 103, 137–149.

    Article  CAS  Google Scholar 

  31. U. Etxeberria, A. L. De La Garza, J. Campin, J. A. Martnez, and F. I. Milagro (2012). Expert Opin. Ther. Targets 16, 269–297.

    Article  CAS  Google Scholar 

  32. P. Anbazhagan, K. Murugan, A. Jaganathan, V. Sujitha, C. M. Samidoss, S. Jayashanthani, P. Amuthavalli, A. Higuchi, S. Kumar, M. Nicoletti, A. Canale, and G. Benelli (2017). J. Clust. Sci.. doi:10.1007/s10876-016-1047-2.

    Google Scholar 

  33. C. Dipankar and S. Murugan (2012). Colloid Surf. B 98, 112–119.

    Article  CAS  Google Scholar 

  34. K. Balan, W. Qing, Y. Wang, X. Liu, T. Palvannan, Y. Wang, F. Ma, and Y. Zhang (2016). RSC Adv. 6, 40162.

    Article  CAS  Google Scholar 

  35. N. Atale, S. Saxena, J. G. Nirmala, R. T. Narendhirakannan, S. Mohanty, and V. Rani (2016). Appl. Biochem. Biotechnol.. doi:10.1007/s12010-016-2274-6.

    Google Scholar 

  36. J. S. Kim, E. Kuk, K. N. Yu, J. H. Kim, S. J. Park, H. J. Lee, S. H. Kim, Y. K. Park, Y. H. Park, C. Y. Hwang, Y. K. Kim, Y.-S. Lee, D. H. Jeong, and M. H. Cho (2007). Nanomed. Nanotechnol. 3, 95–101.

    Article  CAS  Google Scholar 

  37. S. Rajeshkumar, C. Malarkodi, M. Vanaja, and G. Annadurai (2016). J. Mol. Struct. 1116, 165–173.

    Article  CAS  Google Scholar 

  38. R. Thombre, F. Parekh, and N. Patil (2014). Int. J. Pharm. Biol. Sci. 5, 114–119.

    CAS  Google Scholar 

  39. A. K. Singhal, H. Gupta, and V. S. Bhati (2011). Int. J. Appl. Basic Med. Res. 1, 36–39.

    Article  Google Scholar 

  40. A. P. Mishra, S. Saklani, S. Chandra, and P. Tiwari (2015). Int. J. Pharm. Sci. Rev. Res. 32, 34–37.

    CAS  Google Scholar 

  41. G. L. Miller (1959). Anal. Chem. 31, 426–428.

    Article  CAS  Google Scholar 

  42. A. W. Bauer, W. M. M. Kirby, J. C. Sherris, and M. Turck (1966). Am. J. Clin. Pathol. 45, 493–496.

    CAS  Google Scholar 

  43. J. P. Ruparelia, A. K. Chatterjee, S. P. Duttagupta, and S. Mukherji (2008). Acta Biomater. 4, 707–716.

    Article  CAS  Google Scholar 

  44. G. Benelli (2017). J. Clust. Sci.. doi:10.1007/s10876-016-1143-3.

    Google Scholar 

  45. S. V. Otari, R. M. Patil, S. J. Ghosh, and S. H. Pawar (2014). Mater. Lett. 116, 367–369.

    Article  CAS  Google Scholar 

  46. H. Yang, Y. Ren, T. Wang, and C. Wang (2016). Results Phys. 6, 299–304.

    Article  Google Scholar 

  47. D. Philip, C. Unni, S. A. Aromal, and V. K. Vidhu (2011). Spectrochim. Acta A 78, 899–904.

    Article  Google Scholar 

  48. K. Rajaram, D. C. Aiswarya, and P. Sureshkumar (2015). Mater. Lett. 138, 251–254.

    Article  CAS  Google Scholar 

  49. A. Yousefia, R. Yousefia, F. Panahib, S. Sarikhani, A. R. Zolghadr, A. Bahaoddini, and A. Khalafi-Nezhad (2015). Int. J. Biol. Macromol. 78, 46–55.

    Article  Google Scholar 

  50. V. Ravichandran, S. Vasanthi, S. Shalini, S. A. Ali Shah, and R. Harish (2016). Mater. Lett. 180, 264–267.

    Article  CAS  Google Scholar 

  51. N. Roy and A. Barik (2010). Int. J. Nanotechnol. Appl. 4, 95–101.

    Google Scholar 

  52. M. Rai, A. Yadav, and A. Gade (2009). Biotechnol. Adv. 27, 76–83.

    Article  CAS  Google Scholar 

  53. R. Singh, P. Wagh, S. Wadhwani, S. Gaidhani, A. Kumbhar, J. Bellare, and B. A. Chopade (2013). Int. J. Nanomed. 8, 4277–4290.

    Google Scholar 

  54. I. Sondi and B. Salopek-Sondi (2004). J. Colloid Interface Sci. 275, 177–182.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Agricultural Research Center funded by the Ministry of Food, Forestry, and Fisheries, Korea. Authors are thankful to Prof. Shrikrishna D. Sartale, Savitribai Phule Pune University, India for availing HRTEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Seung Shin.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saratale, G.D., Saratale, R.G., Benelli, G. et al. Anti-diabetic Potential of Silver Nanoparticles Synthesized with Argyreia nervosa Leaf Extract High Synergistic Antibacterial Activity with Standard Antibiotics Against Foodborne Bacteria. J Clust Sci 28, 1709–1727 (2017). https://doi.org/10.1007/s10876-017-1179-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1179-z

Keywords

Navigation