Skip to main content
Log in

Fabrication and hemocompatibility of carboxy-chitosan stabilized magnetite nanoparticles

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper describes fabrication of a new hemocompatible, magnetic nanoparticles based on magnetite and naturally occurring chitosan, potentially applicable as biomaterials to nanobiomedicine. We fabricated carboxy-functionalized magnetite–chitosan (Fe3O4–CS–BTCDA) nanocomposite particles by a simple two-stage protocol. Magnetite–chitosan (Fe3O4–CS) nanocomposite particles were first prepared via in situ chemical coprecipitation reactions using Fe2+ and Fe3+ salts in an alkaline aqueous solution of CS. Fe3O4–CS nanocomposite particles were then reacted with butanetetracarboxylic dianhydride (BTCDA) to obtain the Fe3O4–CS–BTCDA nanocomposite particles dispersible under physiological conditions. The obtained nanoparticles are superparamagnetic. The hemolytic activity of the Fe3O4–CS–BTCDA nanocomposite particles is very low and essential for practical bio-related applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abreu F, Campana-Filho SP (2005) Preparation and characterization of carboxymethylchitosan. Polímeros: Ciência e Tecnologia 15:79–83

  • Ahmad H, Rahman MA, Miah MAJ, Tauer K (2008) Magnetic and temperature-sensitive composite polymer particles and adsorption behavior of emulsifiers and trypsin. Macromol Res 16:637–643

    Article  Google Scholar 

  • Alupei L, Peptu AC, Lungan AM, Desbrieres J, Chiscan O, Radji S, Popa M (2016) New hybrid magnetic nanoparticles based on chitosan-maltose derivative for antitumor drug delivery. Int J Biol Macromol 92:561–572

    Article  Google Scholar 

  • Amit PK, Ferguson MR, Kannan MK (2011) Monodispersed magnetite nanoparticles optimized for magnetic fluid hyperthermia: implications in biological systems. J Appl Phys 109:07B310-1–07B310-3

    Article  Google Scholar 

  • Anirudhan ST, Gopal SS, Sandeep S (2014) Synthesis and characterization of montomorillonite/N-(carboxyacyl) chitosan coated magnetic particle nanocomposites for controlled delivery of paracetamol. Appl Clay Sci 88–89:151–158

    Article  Google Scholar 

  • Arias JL, Reddy LH, Couvreur P (2012) Fe3O4/chitosan nanocomposite for magnetic drug targeting to cancer. J Appl Phys 109:084303–084311

    Google Scholar 

  • Ayyappan S, Panneerselvam G, Antony MP, Rama Rao NV, Thirumurugan N, Bharathi A, Philip J (2011) Effect of initial particle size on phase transformation temperature of surfactant capped Fe3O4 nanoparticles. J Phys Chem C 112:18376–18383

    Article  Google Scholar 

  • Bae KH, Park M, Do MJ, Lee N, Ryu JH, Kim GW, Kim C, Park TG, Hyeon T (2012) Chitosan, oligosaccharide-stabilized ferrimagnetic iron oxide nanocubes for magnetically modulated cancer hyperthermia. ACS Nano 6:5266–5273

    Article  Google Scholar 

  • Bauer LM, Situ SF, Griswold MA, Samia ACS (2016) High-performance iron oxide nanoparticles for magnetic particle imaging-guided hyperthermia (hMPI). Nanoscale 8:12162–12169

    Article  Google Scholar 

  • Cai K, Li J, Luo Z, Hu Y, Hou Y, Ding X (2011) β-Cyclodextrin conjugated magnetic nanoparticles for diazepam removal from blood. Chem Commun 47:7719–7721

    Article  Google Scholar 

  • Chang YC, Chen DH (2005) Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4magnetic nanoparticles for removal of Cu(II) ions. J Coll Interf Sci 283:446–451

    Article  Google Scholar 

  • Chang B, Zhang X, Guo J, Sun Y, Tang H, Ren Q, Yang W (2012) General one-pot strategy to prepare multifunctional nanocomposites with hydrophilic colloidal nanoparticles core/mesoporous silica shell structure. J Colloid Interface Sci 377:64–75

    Article  Google Scholar 

  • Chen H, Kaminski MD, Liu X, Mertz CJ, Xie Y, Torno MD, Roengart AJ (2007) A novel human detoxification system based on nanoscale bioengineering and magnetic separation techniques. Med Hypoth 68:1071–1079

    Article  Google Scholar 

  • Cornell RM, Schwertmann U (1996) The iron oxides: structure, properties, reactions, occurrence and uses. Wiley-VCH, Weinheim

    Google Scholar 

  • da Costa GM, De Grave E, de Bakker PMA, Vandenberghe RE (1994) Synthesis and characterization of some iron oxides by sol-gel method. J Solid State Chem 113:405–412

    Article  Google Scholar 

  • Dewi MR, Skinner WM, Nann T (2014) Synthesis and phase transfer of monodisperse iron oxide (Fe3O4) nanocubes. Aust J Chem 67:663–669

    Article  Google Scholar 

  • Dolatkhah A, Wilson LD (2016) Magnetite/polymer brush nanocomposites with switchable uptake behavior toward methylene blue. ACS Appl Mater Interf 8:5595–5607

    Article  Google Scholar 

  • Du Y, Pei M, He Y, Yu F, Guo W, Wanng L (2014) Preparation, characterization and application of magnetic Fe3O4–CS for the adsorption of orange I from aqueous solutions. PLoS ONE 9:e116073

    Article  Google Scholar 

  • Faiyas APA, Vinod ME, Joseph J, GanesanR Pandey K R (2010) Dependence of pH and surfactant effect in the synthesis of magnetite (Fe3O4) nanoparticles and its properties. J Magn Magn Mater 322:400–404

    Article  Google Scholar 

  • Gupta J, Mohapatra J, Bhargava P, Bahadur D (2016) A pH-responsive folate conjugated magnetic nanoparticle for targeted chemo-thermal therapy and MRI diagnosis. Dalton Trans 45:2454–2461

    Article  Google Scholar 

  • Hasany FS, Ahmed I, Rajan J, Rehman A (2012) Systematic review of the preparation techniques of iron oxide magnetic nanoparticles. Nanosci Nanotechnol 2:148–158

    Article  Google Scholar 

  • Hong YR, Feng B, Chen LL, Liu HG, Li ZH, Zheng Y, Wei GD (2008) Synthesis, characterization and MRI application of dextran-coated Fe3O4 magnetic nanoparticles. Biochem Eng J 42:290–300

    Article  Google Scholar 

  • Hong S, Chang Y, Rhee I (2010) Chitosan-coated ferrite (Fe3O4) nanoparticles as a T2 contrast agent for magnetic resonance imaging. J Korean Phys Soc 56:868–873

    Article  Google Scholar 

  • Hritcu D, Popa M, Popa N, Badescu V, Balan V (2009) Preparation and characterization of magnetic chitosan nanospheres. Turk J Chem 33:785–796

    Google Scholar 

  • Jin J, Yang F, Zhang F, Hu W, Sun SB, Ma J (2012) 2,2′-(phenylazanediyl) diacetic acid modified Fe3O4@PEI for selective removal of cadmium ions from blood. Nanoscale 4:733–736

    Article  Google Scholar 

  • Kadam AA, Lee SD (2015) Glutaraldehyde cross-linked magnetic chitosan nanocomposites: reduction precipitation synthesis, characterization, and application for removal of hazardous textile dyes. Bioresour Technol 193:563–567

    Article  Google Scholar 

  • Kalkan NA, Aksoy S, Aksoy EA, Hasirci N (2012) Preparation of chitosan-coated magnetite nanoparticles and application for immobilization of laccase. J Appl Polym Sci 123:707–716

    Article  Google Scholar 

  • Kariminia S, Shamsipuri A, Shamsipuri M (2016) Analytical characteristics and application of novel chitosan coated magnetic nanoparticles as an efficient drug delivery system for ciprofloxacin. Enhanced drug release kinetics by low-frequency ultrasounds. J Pharm Biomed Anal 129:450–457

    Article  Google Scholar 

  • Kim DH, Kim KN, Kim KM, Lee YK (2009) Targeting to carcinoma cells with chitosan- and starch-coated magnetic nanoparticles for magnetic hyperthermia. J Biomed Mater Res A 88:1–11

    Article  Google Scholar 

  • Kono H, Oeda I, Nakamura T (2013) The preparation swelling characteristics, and albumin adsorption and release behaviors of a novel chitosan-based polyampholite hydrogel. React Funct Polym 73:97–107

    Article  Google Scholar 

  • Köseoglu Y, Kavas H (2008) Size and surface effects on magnetic properties of Fe3O4 nanoparticles. J Nanosci Nanotechnol 8:584–590

    Article  Google Scholar 

  • Kumar SR, Priyatharshni S, Babu VN, Mangalaraj D, Viswanathan C, Kannan S, Ponpandian N (2014) Quercetin conjugated superparamagnetic magnetite nanoparticles for in vitro analysis of breast cancer cell lines for chemotherapy applications. J Colloid Interface Sci 436:234–242

    Article  Google Scholar 

  • Larumbe S, Gomez-Polo C, Perez-Landazabal J, Pastor JMJ (2012) Effect of SiO2 coating on the magnetic properties of Fe3O4 nanoparticles. Phys Condens Matter 24:1–6

    Article  Google Scholar 

  • Lemine OM, Omri K, Zhang B, Mir EL, Sajieddine M, Alyamani A, Bououdina M (2012) Sol-gel synthesis of 8 nm magnetite (Fe3O4) nanoparticles and their magnetic properties. Superlat Microst 52:793–799

    Article  Google Scholar 

  • Li J, Hou Y, Chen X, Ding X, Liu Y, Shen X, Cai K (2014) Recyclable heparin and chitosan conjugated magnetic nanocomposites for selective removal of low-density lipoprotein from plasma. J Mater Sci Mater Med 25:1055–1064

    Article  Google Scholar 

  • Liu X, Hu Q, Fang Z, Zhang X, Zhang B (2009) Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal. Langmuir 25:3–8

    Article  Google Scholar 

  • Liu X, Chen X, Li Y, Wang X, Peng X, Zhu W (2012) Preparation of superparamagnetic Fe3O4@alginate/chitosan nanospheres for candida rugosa lipase immobilization and utilization of layer-by-layer assembly to enhance the stability of immobilized lipase. ACS Appl Mater Inter 4:5169–5178

    Article  Google Scholar 

  • Liu Y, Yuan M, Qiao L, Guo R (2014) An efficient colorimetric biosensor for glucose based on peroxidase-like protein-Fe3O4 and glucose oxidase nanocomposites. Biosens Bioelectron 52:391–396

    Article  Google Scholar 

  • Long J, Yu X, Xu E, Wu Z, Xu X, Jin Z, Jiao A (2015) In situ synthesis of new magnetite chitosan/carrageenan nanocomposites by electrostatic interactions for protein delivery applications. Carbohydr Polym 131:98–107

    Article  Google Scholar 

  • López GR, Pineda GM, Hurtado G, de León DR, Fernández S, Saade H, Bueno D (2013) Chitosan-coated magnetic nanoparticles prepared in one step by reverse microemulsion precipitation. Int J Mol Sci 141:9636–19650

    Google Scholar 

  • Luo B, Song XJ, Zhang F, Xia A, Yang WL, Hu JH, Wang CC (2010) Multi-functional thermosensitive composite microspheres with high magnetic susceptibility based on magnetite colloidal nanoparticle clusters. Langmuir 26:1674–1679

    Article  Google Scholar 

  • Madhuri-Mandal M, Kundu S, Ghosh KS, Panigrahi S, Sau KT, Yusuf SM, Pal T (2005) Magnetite nanoparticles with tunable gold or silver shell. J Colloid Interface Sci 286:187–194

    Article  Google Scholar 

  • Massart M (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17:1247–1248

    Article  Google Scholar 

  • Onem H, Cicek S, Nadaroglu H (2016) Immobilization of a thermostable phytase from Pinar melkior (Lactarius piperatus) onto magnetite chitosan nanoparticles. CyTA J Food 14:74–83

    Article  Google Scholar 

  • Paluszkiewicz C, Stodolak E, Hasik M, Blazewicz M (2011) FT-IR study of montmorillonite-chitosan nanocomposite materials. Spectrochim Acta Part A 79:784–788

    Article  Google Scholar 

  • Pan C, Hu B, Li W, Sun Y, Ye H, Zeng X (2009) Novel and efficient method for immobilization and stabilization of β-d-galactosidase by covalent attachment onto magnetic Fe3O4-chitosan nanoparticles. J Mol Catal B Enzyme 61:208–215

    Article  Google Scholar 

  • Pilapong C, Sitthichai S, Thongtem S, Thongtem T (2014) Smart magnetic nanoparticle-aptamer probe for targeted imaging and treatment of hepatocellular carcinoma. Int J Pharm 473:469–474

    Article  Google Scholar 

  • Pylypchuk IV, Kołodyńska D, Kozioł M, Gorbyk PP (2016) Gd-DTPA adsorption on chitosan/magnetite nanocomposites. Nanoscale Res Lett 11:68–178

    Article  Google Scholar 

  • Sadighian S, Hosseini-Monfared S, Rostamizadeh K, Hamidi M (2015) pH-Triggered magnetic-chitosan nanogels (MCNs) for doxorubicin delivery: physically vs. chemically cross linking approach. Adv Pharm Bull 5:115–120

  • Safari J, Javadian L (2014) Chitosan decorated Fe3O4 nanoparticles as a magnetic catalyst in the synthesis of phenytoin derivatives. RSC Adv 4:48973–48979

    Article  Google Scholar 

  • Sakti WCS, Narita Y, Sasaki T, Nuryono Tanaka S (2015) A novel pyridinium functionalized magnetic chitosan with pH-independent and rapid adsorption kinetics for magnetic separation of Cr(VI). J Environ Chem Eng 3:1953–1961

    Article  Google Scholar 

  • Salazar-Alvarez G (2004) Synthesis, characterization and application of iron oxide nanoparticles. Doctoral Thesis, Stockholm, Sweden

  • Samadikhah HR, Majidi A, Nikkhah M, Hosseinkhani S (2011) Preparation, characterization, and efficient transfection of cationic liposomes and nanomagnetic cationic liposomes. Int J Nanomed 6:2275–2283

    Google Scholar 

  • Shen S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124:8204–8205

    Article  Google Scholar 

  • Shrifian-Esfahni A, Salehi TM, Nasr-Esfahni M, Ekramian E (2015) Chitosan-modified superparamagnetic iron oxide nanoparticles: design, fabrication, characterization and antibacterial activity. CHEMIK 69:19–32

    Google Scholar 

  • Singhal JP, Ray AR (2002) Synthesis of blood compatible polyamide block copolymers. Biomaterials 23:1139–1145

    Article  Google Scholar 

  • Sreeja V, Joy PA (2011) Effect of inter-particle interactions on the magnetic properties of magnetite nanoparticles after coating with dextran. Int J Nanotech 8:907–915

    Article  Google Scholar 

  • Strobel R, Pratsinis ES (2009) Direct synthesis of maghemite, magnetite and wustite nanoparticles by flame spray pyrolysis. Adv Powder Tech 20:190–194

    Article  Google Scholar 

  • Sun HM, Cao LY, Lu LH (2011) Magnetite/reduced graphene oxide nanocomposites: one step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Res 4:550–562

    Article  Google Scholar 

  • Tartaj P, Morales MD, Veintemillas-Verdaguer S, Gonzalez-Carreno T, Serna CJ (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36:R182–R197

    Article  Google Scholar 

  • Thakur M, De K, Giri S, Si S, Kotal A, Mandal KT (2006) Interparticle interaction and size effect in polymer coated magnetite nanoparticles. J Phys: Condens Matter 98:9093–9104

    Google Scholar 

  • Tran VH, Tran DL, Nguyen NT (2010) Preparation of chitosan/magnetite composite beads and their application for removal of Pb(II) and Ni(II) from aqueous solution. Mater Sci Eng, C 30:304–310

    Article  Google Scholar 

  • Unsoy G, Yalcin S, Khodadust R, Gunduz G, Gunduz U (2012) Synthesis optimization and characterization of chitosan-coated iron oxide nanoparticles produced for biomedical applications. J Nanopart Res 14:964–976

    Article  Google Scholar 

  • Vuddanda PR, Rajamanickam VM, Yaspal M, Sing S (2014) Investigations on agglomeration and hemocompatibility of vitamin E TPGS surface modified berberin chloride nanoparticles. Biomed Res Int 2014:1–11

    Article  Google Scholar 

  • Wang Y, Li B, Xu F, Jia D, Feng Y, Zhou Y (2012) In vitro cell uptake of biocompatible magnetite/chitosan nanoparticles with high magnetization: a single-step synthesis approach for in situ-modified magnetite by amino groups of chitosan. J Biomater Sci Polym Ed 23:843–860

    Article  Google Scholar 

  • Weinhold XM, Sauvageau MCJ, Keddig N, Matzke M, Tartsch B, Grunwald I, Kubel C, Jastorffg B, Thoming J (2009) Strategy to improve the characterization of chitosan for sustainable biomedical applications: SAR guided multi-dimensional analysis. Green Chem 11:498–509

    Article  Google Scholar 

  • Zamora-Mora V, Fernández-Gutiérrez M, Román SJ, Goya G, Hernández R, Mijangos C (2014) Magnetic core-shell chitosan nanoparticles: rheological characterization and hyperthermia application. Carbohydr Polym 102:691–698

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Nobuaki Kutsuzawa and Dr. Osamu Ishii of Yamagata University for instruction on the magnetic measurements, and Dr. Shigekazu Yano of Yamagata University for his kind assistance on the hemocompatibility analysis. Md. Abdur Rahman also acknowledges the financial support from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bungo Ochiai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.A., Ochiai, B. Fabrication and hemocompatibility of carboxy-chitosan stabilized magnetite nanoparticles. Microsyst Technol 24, 669–681 (2018). https://doi.org/10.1007/s00542-017-3318-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3318-8

Navigation