Skip to main content
Log in

Entropy Generation Analysis for a Radiative Micropolar Fluid Flow Through a Vertical Channel Saturated with Non-Darcian Porous Medium

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this study, an analytical investigation of convective heat transfer and entropy generation analysis of flow of micropolar fluid is presented. The infinite channel is assumed to be saturated with porous material and the walls are maintained at different constant temperatures. The Eringen thermo-micro-polar material model is used to simulate the rheological flow in the channel. The fluid is assumed to be gray, absorbing, emitting but non-scattering medium, and the Rosseland’s approximation is utilized to simulate the radiative heat flux component of heat transfer in energy transport equation. The resulting governing equations are then solved under physically viable boundary conditions at the channel walls using the Adomian decomposition method. The influences of emerging thermophysical parameters are addressed through graphs. The computations show that the increase in the Grashof number and radiation parameter causes to increase the entropy generation. Further, the effect of viscous dissipation was taken into account since it significantly affects heat transfer and entropy generation characteristics and cannot be ignored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

Be :

Bejan number

Br :

Brinkman number

\(\hbox {Br}/\Omega \) :

Viscous dissipation parameter

c :

Coupling number

\(C_f\) :

Forchheimer coefficient or constant

Da:

Darcy number

Ec :

Eckert number

2h :

Width of the free channel

\(\overline{\mathbf{h}}\) :

Heat flux

\(\overline{g}\) :

Acceleration due to gravity

K:

Permeability of the porous media

k :

Thermal conductivity of the fluid

\(k^{*}\) :

Mean absorption coefficient

\(N_H \) :

Entropy generation due to radiative heat transfer

\(N_P \) :

Entropy generation due to viscous dissipation

Nr :

Radiation parameter

Ns :

Total entropy generation number

P :

Pressure

Pr :

Prandtl number

\(\overline{q}\) :

Velocity vector

\(q_r\) :

Radiative heat flux

R :

Reynolds number

s:

Couple stress parameter

\(\hbox {S}_{\mathrm{G}}\) :

Entropy generation rate

\(\hbox {T}\) :

Non-dimensional temperature

\(\hbox {T}_{o}\) :

Reference temperature

u :

Dimensionaless velocity in X-direction

\(U_o\) :

Characteristic velocity

XY :

Space co-ordinates

\(\beta , \gamma \) :

Gyro-viscosity coefficients

\(\rho \) :

Density

\(\delta \) :

Rheological parameter

\(\sigma ^{*}\) :

Stefan–Boltzmann constant

\(\Delta T\) :

Temperature difference \((T_{II} -T_I )\)

\(\mu \) :

Dynamic viscosity coefficients

\(\kappa \) :

Eringen vortex viscosity coefficients

\(\overline{\nu }\) :

Microrotation

\(\Omega \) :

Dimensionless temperature difference

\(\phi \) :

Dimensionless angular velocity in X-direction

\(\varphi \) :

Irreversibility distribution ratio

\(\theta \) :

Non-dimensional temperature

References

  1. Agarwal, R.S., Dhanapal, C.: Numerical solution of free convection micropolar fluid flow between two parallel porous vertical plates. Int. J. Eng. Sci. 26(12), 1247–1255 (1988)

    Article  Google Scholar 

  2. Prakash, D., Muthtamilselvan, M.: Effect of radiation on transient MHD flow of micropolar fluid between porous vertical channel with boundary conditions of the third kind. Ain Shams Eng. J. 5, 1277–1286 (2014)

    Article  Google Scholar 

  3. Oahimire, J.I., Olajuwon, B.I.: Effect of Hall current and thermal radiation on heat and mass transfer of a chemically reacting MHD flow of a micropolar fluid through a porous medium. J. King Saud Univ. Eng. Sci. 26, 112–121 (2014)

    MATH  Google Scholar 

  4. Zueco, J., Eguía, P., López-Ochoa, L.M., Collazo, J., Patiño, D.: Unsteady MHD free convection of a micropolar fluid between two parallel porous vertical walls with convection from the ambient. Int. Commun. Heat Mass Transf. 36, 203–209 (2009)

    Article  Google Scholar 

  5. Olajuwon, B.I., Oahimire, J.I., Ferdow, M.: Effect of thermal radiation and Hall current on heat and mass transfer of unsteady MHD flow of a viscoelastic micropolar fluid through a porous medium. Eng. Sci. Technol. Int. J. 17, 185–193 (2014)

    Article  Google Scholar 

  6. Srinivas, S., Muthuraj, R.: Effects of thermal radiation and space porosity on MHD mixed convection flow in a vertical channel using homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 15, 2098–2108 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bejan, A.: A study of entropy generation in fundamental convective heat transfer. ASME J. Heat Transf. 101, 718–725 (1979)

    Article  Google Scholar 

  8. Bejan, A.: Second law analysis in heat transfer and thermal design. Adv. Heat Transf. 15, 1–58 (1982)

    Article  Google Scholar 

  9. Bejan, A.: Entropy Generation Minimization. CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  10. Mahmud, S., Fraser, R.A.: Mixed convection–radiation interaction in a vertical porous channel: entropy generation. Energy 28, 1557–1577 (2003)

    Article  Google Scholar 

  11. Mokheimer, E.M.A., Al-Salim, A.H.: Entropy generation due to mixed convection between vertical parallel plates under isothermal boundary conditions. Int. J. Exergy 6(5), 671–697 (2009)

    Article  Google Scholar 

  12. Mokheimer, E.M.A.: Buoyancy effects on entropy generation in the entrance region of isothermal/adiabatic vertical channel. Arab. J. Sci. Eng. 37, 1681–1700 (2012)

    Article  Google Scholar 

  13. Liu, C.-C., Lo, C.-Y.: Numerical analysis of entropy generation in mixed-convection MHD flow in vertical channel. Int. Commun. Heat Mass Transf. 39, 1354–1359 (2012)

    Article  Google Scholar 

  14. Makinde, O.D., Eegunjobi, A.S.: Entropy generation in a couple stress fluid flow through a vertical channel filled with saturated porous media. Entropy 15, 4589–4606 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chen, C.-K., Lai, H.-Y., Liu, C.-C.: Numerical analysis of entropy generation in mixed convection flow with viscous dissipation effects in vertical channel. Int. Commun. in. Heat Mass Transf. 38, 285–290 (2011)

    Article  Google Scholar 

  16. Çetin, B., Zeinali, S.: Analysis of heat transfer and entropy generation for a low-Peclet-number microtube flow using a second-order slip model: an extended-Graetz problem. J. Eng. Math. 89, 13–25 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  17. Adesanya, S.O., Kareem, S.O., Falade, A.J., Arekete, S.A.: Entropy generation analysis for a reactive couple stress fluid flow through a channel saturated with porous material. Energy 93, 1239–1245 (2015)

    Article  Google Scholar 

  18. Adesanya, S.O., Makinde, O.D.: Thermodynamic analysis for a third grade fluid through a vertical channel with internal heat generation. J. Hydrodyn. 27(2), 264–272 (2015)

    Article  Google Scholar 

  19. Fersadou, I., Kahalerras, H., El Ganaoui, M.: MHD mixed convection and entropy generation of a nano fluid in a vertical porous channel. Comput. Fluids 121, 164–179 (2015)

    Article  MathSciNet  Google Scholar 

  20. Srinivas, J., Murthy, J.V.R., Sai, K.S.: Entropy generation analysis of the flow of two immiscible couple stress fluids between two porous beds. Comput. Therm. Sci. 7(2), 123–137 (2015)

    Article  Google Scholar 

  21. Hussain, S.H.: Analysis of heatlines and entropy generation during double-diffusive MHD natural convection within a tilted sinusoidal corrugated porous enclosure. Eng. Sci. Technol. Int. J. 19, 926–945 (2016)

    Article  Google Scholar 

  22. Adomian, G.: A review of the decomposition method in applied mathematics. J. Math. Anal. Appl. 135, 501–544 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  23. Siddiqui, A.M., Hameed, M., Siddiqui, B.M., Ghori, Q.K.: Use of Adomian decomposition method in the study of parallel plate flow of a third grade fluid. Commun. Nonlinear Sci. Numer. Simul. 15, 2388–2399 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Aski, F.S., Nasirkhani, S.J., Mohammadian, E., Asgarie, A.: Application of Adomian decomposition method for micropolar flow in a porous channel. Propuls. Power Res. 3(1), 15–21 (2014)

    Article  Google Scholar 

  25. Adesanya, S.O., Makinde, O.D.: Effects of couple stresses on entropy generation rate in a porous channel with convective heating. Comput. Appl. Math. 34, 293–307 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  26. Sari, M.R., Kezzar, M., Adjabi, R.: Heat transfer of copper/water nanofluid flow through converging–diverging channel. J. Cent. South Univ. 23, 484–496 (2016)

    Article  Google Scholar 

  27. RamReddy, Ch., Kaladhar, K., Srinivasacharya, D., Pradeepa, T.: Influence of Soret, Hall and Joule heating effects on mixed convection flow saturated porous medium in a vertical channel by Adomian decomposition method. Open Eng. 6, 10–21 (2016)

  28. Eringen, A.C.: The theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  29. Eringen, A.C.: Microcontinnum Field Theories-II: Fluent Media. Springer, New York (2001)

    MATH  Google Scholar 

  30. Lukaszewicz, G.: Micropolar fluids: Theory and Applications. Birkhauser, Boston (1999)

    Book  MATH  Google Scholar 

  31. Kamisli, F., Oztop, H.F.: Second law analysis of the 2D laminar flow of two immiscible, incompressible viscous fluids in a channel. Numer. Heat Transf. 44(6), 751–761 (2008)

    Google Scholar 

  32. Kiyasatfar, M., Pourmahmoud, N., Golzan, M.M., Mirzaee, I.: Thermal behavior and entropy generation rate analysis of a viscous flow in MHD micropumps. J. Mech. Sci. Technol. 26(6), 1949–1955 (2012)

    Article  Google Scholar 

  33. Chen, C.-K., Yang, Y.-T., Chang, K.-H.: The effect of thermal radiation on entropy generation due to micropolar fluid flow along a wavy surface. Entropy 13, 1595–1610 (2011)

    Article  MATH  Google Scholar 

  34. Srinivas, J., Murthy, J.V.R.: Second law analysis of the flow of two immiscible micropolar fluids between two porous beds. J. Eng. Thermophys. 25(1), 126–142 (2016)

    Article  Google Scholar 

  35. Srinivasacharya, D., Bindu, K.H.: Entropy generation due to micropolar fluid flow between concentric cylinders with slip and convective boundary conditions. Ain Shams Eng. J. (2016). doi:10.1016/j.asej.2015.10.016

    Google Scholar 

  36. Sparrow, E.M., Cess, R.D.: Radiation Heat Transfer. Brooks Publishing Co., Washington (1978)

    MATH  Google Scholar 

  37. Devakar, M., Iyengar, T.K.V.: Run up flow of an incompressible micropolar fluid between parallel plates–a state space approach. Appl. Math. Model. 35, 1751–1764 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  38. Singh, A.K., Gholami, H.R., Soundalgekar, V.M.: Transient free-convection flow between two vertical parallel plates. Heat Mass Transf. 31, 329–332 (1996)

    Article  Google Scholar 

  39. Rashidi, M.M., Parsa, A.B., Bég, O.A., Shamekhi, L., Sadri, S.M., Bég, T.A.: Parametric analysis of entropy generation in magneto-hemodynamic flow in a semi-porous channel with OHAM and DTM. Appl. Bionics Biomech. 11, 47–60 (2014)

    Article  Google Scholar 

  40. Aïboud, S., Saouli, S.: Entropy analysis for viscoelastic magneto hydrodynamic flow over a stretching surface. Int. J. Non-linear Mech. 45(5), 482–489 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the reviewers for their valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivas Jangili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jangili, S., Adesanya, S.O., Falade, J.A. et al. Entropy Generation Analysis for a Radiative Micropolar Fluid Flow Through a Vertical Channel Saturated with Non-Darcian Porous Medium. Int. J. Appl. Comput. Math 3, 3759–3782 (2017). https://doi.org/10.1007/s40819-017-0322-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-017-0322-8

Keywords

Navigation