Skip to main content
Log in

Enrichment of lithium isotope 6Li by ion exchange resin with specific particle size

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Enrichment of lithium isotopes by displacement chromatography on strong acid cation exchanger was investigated. Narrow particle fraction of Dowex 50 WX 2 cation exchanger having diameter of 150–200 µm and total exchange capacity of 1.31 meq mL−1 was used as stationary phase. As a mobile phase, 1 mol L−1 solution of ammonium nitrate solution was used. Shape and position of Li chromatographic peak, was determined by atomic emission spectroscopy (AES). Isotope ratio was estimated by ICP–MS after 1, 8 and 10 enrichment steps. Value of separation factor for 6Li in one step was determined to be 1.027.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Coplen T, Bohlke J, De Bievre P, Ding T, Holden N, Hopple J, Krouse H, Lamberty A, Peiser H, Revesz K, Rieder S, Rosman K, Roth E, Taylor P, Vocke R, Xiao Y (2002) Isotope-abundance variations of selected elements—(IUPAC technical report). Pure Appl Chem. doi:10.1351/pac200274101987

    Google Scholar 

  2. Sears V (1992) Neutron scattering lengths and cross sectioirn. Neutron News 3(3):8

    Article  Google Scholar 

  3. Nishizawa K, Watanabe H, Ishino SI, Shinagawa M (1984) Lithium isotope-separation by cryptand (2b,2,1) polymer. J Nucl Sci Technol. doi:10.3327/jnst.21.133

    Google Scholar 

  4. Zaghloul M, Sze D, Raffray A (2003) Thermo-physical properties and equilibrium vapor-composition of lithium fluoride-beryllium fluoride (2LiF/BeF2) molten salt. Fus Sci Technol 44(2):344–350

    CAS  Google Scholar 

  5. Casini G (1983) Progress in studies of li17pb83 as liquid breeder for fusion-reactor blankets. Nucl Technol 4(2):1228–1232

    CAS  Google Scholar 

  6. Lewis G, Macdonald R (1936) The separation of lithium isotopes. J Am Chem Soc. doi:10.1021/ja01303a045

    Google Scholar 

  7. Okuyama K, Okada I, Saito N (1973) The isotope effects in the isotope exchange equilibria of lithium in the amalgam-solution systém. J Inorg Nucl Chem. doi:10.1016/0022-1902(73)80520-2

    Google Scholar 

  8. Taylor T, Urey H (1937) On the electrolytic and chemical exchange methods for the separation of the lithium isotopes. J Chem Phys. doi:10.1063/1.1750079

    Google Scholar 

  9. Glueckauf E, Barker K, Kitt G (1949) Theory of chromatography.8. the separation of lithium isotopes by ion exchange and of neon isotopes by low-temperature adsorption columns. Discuss Faraday Soc 7:199–213

    Article  Google Scholar 

  10. Symons EA (1985) Lithium isotope-separation—a review of possible techniques. Sep Sci Technol. doi:10.1080/01496398508060696

    Google Scholar 

  11. Samuelson O (1963) Ion exchange separations in analytical chemistry. Wiley, New York

    Google Scholar 

  12. Cornish FW (1958) The practical application of chromatographic theory to analytical and preparative separations by ion-exchange elution. Analyst. doi:10.1039/an9588300634

    Google Scholar 

  13. Djurfeldt R, Samuelson O (1950) Utilization of ion exchangers in analytical chemistry 15. Acta Chem Scand. doi:10.3891/acta.chem.scand.04-0165

    Google Scholar 

  14. Ergun S (1952) Fluid flow through packed columns. Chem Eng Prog 48(2):89–94

    CAS  Google Scholar 

  15. Macdonald IF, El-Sayed MS, Mow K, Dullien FAL (1979) Flow through porous media—the Ergun equation revisited in. Eng Chem Fundam. doi:10.1021/i160071a001

    Google Scholar 

  16. Lee D, Begun G (1958) The enrichment of lithium isotopes by ion-exchange chromatography. I. The influence of the degree of crosslinking on the separation factor. J Am Chem Soc. doi:10.1021/ja01519a013

    Google Scholar 

  17. Yamaji K, Makita Y, Watanabe H, Sonoda A, Kanoh H, Hirotsu T, Ooi K (2001) Theoretical estimation of lithium isotopic ruduced partition function ratio for lithium ions in aqueous solution. J Phys Chem A. doi:10.1021/jp001303i

    Google Scholar 

  18. Barrett J (2003) Inorganic chemistry in aqueous. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  19. Kiriukhin M, Collins K (2002) Dynamic hydration numbers for biologically important ions. Biophys Chem. doi:10.1016/S0301-4622(02)00153-9

    Google Scholar 

  20. Fisher S, Kunin R (1955) Routine exchange capacity determinations of ion exchange resins. Anal Chem. doi:10.1021/ac60103a052

    Google Scholar 

  21. Osman M (1977) Glyoxal-bis-(2-hydroxyanil) as indicator for complexometric titrations of cobalt(ii), nickel(ii), manganese(ii) and silver(I) fresenius. Z Anal Chem. doi:10.1007/bf00464035

    Google Scholar 

  22. Kim D, Hong C, Kim C, Jeong Y, Jeon Y, Lee J (1997) Lithium isotope separation on an ion exchange resin having azacrown ether as an anchor group. J Radioanal Nucl Chem. doi:10.1007/bf02034861

    Google Scholar 

  23. Dong MW (2006) Modern HPLC for practicing scientists. Wiley, Hoboken

    Book  Google Scholar 

  24. Gritti F, Guiochon G (2011) Measurement of the eddy diffusion term in chromatographic columns. I. Application to the first generation of 4.6 mm ID monolithic columns. J Chromatogr A 1218(31):5216–5227. doi:10.1016/j.chroma.2011.05.101

    Article  CAS  Google Scholar 

  25. Glueckauf E (1958) Theory of chromatography. 11. Enrichment of isotopes by chromatography. Trans Faraday Soc 54(8):1203–1205. doi:10.1039/tf9585401203

    Article  CAS  Google Scholar 

  26. Kim D (2001) Chromatographic enrichment of lithium isotopes by hydrous manganese(IV) oxide. Bull Korean Chem Soc 22(5):503–506

    CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the financial support from specific university research (MSMT No 20/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mikeš.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikeš, J., Ďurišová, J. & Jelínek, L. Enrichment of lithium isotope 6Li by ion exchange resin with specific particle size. J Radioanal Nucl Chem 312, 13–18 (2017). https://doi.org/10.1007/s10967-017-5198-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5198-x

Keywords

Navigation