Skip to main content
Log in

Neuropsychiatric Effects of Antimicrobial Agents

  • Review Article
  • Published:
Clinical Drug Investigation Aims and scope Submit manuscript

Abstract

Antimicrobial drugs used in clinical practice are selected on the basis of their selective toxicity against bacterial cells. However, all exhibit multiple offsite interactions with eukaryotic cell structures, resulting in adverse reactions during antimicrobial pharmacotherapy. A multitude of these side effects involve the nervous system as antimicrobials at clinically relevant concentrations seem to interact with many of the same molecules usually implicated in the action of psychotropic drugs. The importance of such events cannot be overstated, as the misdiagnosis of an adverse drug reaction as a symptom of a primary psychiatric or neurological disorder entails great suffering for the patient affected as well as significant costs for the healthcare system. The neuropsychiatric effects of antimicrobial drugs are extensively documented in the literature. A number of antimicrobial drugs have the potential to exert CNS effects and many are associated with stimulant, psychotomimetic and epileptogenic properties, mediated by GABA antagonism (beta-lactams, quinolones and clarithromycin), NMDA agonism (d-cycloserine, aminoglycosides, and perhaps quinolones), MAO inhibition (linezolid, metronidazole and isoniazid weakly) as well as more exotic mechanisms, as in the case of trimethoprim, isoniazid, ethambutol, rifampicin and the tetracyclines. While those effects are generally undesirable, they may also under certain circumstances be beneficial, and further research is warranted in that direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grill MF, Maganti RK. Neurotoxic effects associated with antibiotic use: management considerations. Br J Clin Pharmacol. 2011;72(3):381–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Kass JS, Shandera WX. Nervous system effects of antituberculosis therapy. CNS Drugs. 2010;24(8):655–67.

    Article  CAS  PubMed  Google Scholar 

  3. Neff NE, Kuo G. Acute manic psychosis induced by triple therapy for H. pylori. J Am Board Fam Pract. 2002;15(1):66–8.

    PubMed  Google Scholar 

  4. Dickerson FB, Stallings CR, Boronow JJ, Origoni AE, Yolken RH. A double-blind trial of adjunctive azithromycin in individuals with schizophrenia who are seropositive for Toxoplasma gondii. Schizophr Res. 2009;112(1–3):198–219.

    Article  PubMed  Google Scholar 

  5. Ma TK-W, Chow K-M, Choy ASM, Kwan BC-H, Szeto C-C, Li PK-T. Clinical manifestation of macrolide antibiotic toxicity in CKD and dialysis patients. Clin Kidney J. 2014;7(6):507–12.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Snider LA, Lougee L, Slattery M, Grant P, Swedo SE. Antibiotic prophylaxis with azithromycin or penicillin for childhood-onset neuropsychiatric disorders. Biol Psychiatry. 2005;57(7):788–92.

    Article  CAS  PubMed  Google Scholar 

  7. Fleet JL, Shariff SZ, Bailey DG, et al. Comparing two types of macrolide antibiotics for the purpose of assessing population-based drug interactions. BMJ Open. 2013;3(7):e002857.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Cone LA, Padilla L, Potts BE. Delirium in the elderly resulting from azithromycin therapy. Surg Neurol. 2003;59(6):509–11.

    Article  PubMed  Google Scholar 

  9. Bertrand D, Bertrand S, Neveu E, Fernandes P. Molecular characterization of off-target activities of telithromycin: a potential role for nicotinic acetylcholine receptors. Antimicrob Agents Chemother. 2010;54(12):5399–402.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Hatanaka Y, Zamami Y, Koyama T, et al. A ketolide antibiotic, telithromycin, inhibits vascular adrenergic neurotransmission in the rat mesenteric vascular bed. Br J Pharmacol. 2008;155(6):826–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Lopes R, Rodrigues R, Domingues I, Curral R, Roma-Torres A. Antibiomania: a case of a manic episode induced by clarithromycin. Acta Med Port. 2011;24(5):827–32.

    PubMed  Google Scholar 

  12. Mishra A, Pandya HV, Dave N, Mathew M, Sapre CM, Chaudhary S. A rare debilitating neurological adverse effect of ranolazine due to drug interaction with clarithromycin. Indian J Pharmacol. 2014;46(5):547–8.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Dinca EB, Skinner A, Dinca RV, Tudose C. The dangers of gastritis: a case of clarithromycin-associated brief psychotic episode. J Nerv Ment Dis. 2015;203(2):149–51.

    Article  PubMed  Google Scholar 

  14. Ortız-Domınguez A, Berlanga C, Gutierrez-Mora D. A case of clarithromycin-induced manic episode (antibiomania). Int J Neuropsychopharmacol. 2004;7(1):99–100.

    Article  PubMed  CAS  Google Scholar 

  15. Baranowski WJ. Clarithromycin-induced hypomania in a child—a case report. Acta Psychiatr Scand. 2010;122(3):267–8.

    Article  PubMed  Google Scholar 

  16. Baranowski WJ. Clarithromycin-induced hypersomnia in children. Int J Clin Pharmacol Ther. 2011;49(5):297–9.

    Article  CAS  PubMed  Google Scholar 

  17. Bandettini di Poggio M, Anfosso S, Audenino D, Primavera A. Clarithromycin-induced neurotoxicity in adults. J Clin Neurosci. 2011;18(3):313–8.

    Article  CAS  PubMed  Google Scholar 

  18. Brooks JO 3rd, Hoblyn JC. Secondary mania in older adults. Am J Psychiatry. 2005;162(11):2033–8.

    Article  PubMed  Google Scholar 

  19. Liu EY, Vasudev A. Mania induced by clarithromycin in a geriatric patient taking low-dose prednisone. Prim Care Companion CNS Disord. 2014;16(3). doi:10.4088/PCC.14l01626.

  20. Rezvanian E, Watson NF. Kleine–Levin syndrome treated with clarithromycin. J Clin Sleep Med. 2013;9(11):1211–2.

    PubMed Central  PubMed  Google Scholar 

  21. Trotti LM, Bliwise DL, Rye DB. Further experience using clarithromycin in patients with Kleine–Levin syndrome. J Clin Sleep Med. 2014;10(4):457–8.

    PubMed Central  PubMed  Google Scholar 

  22. Khan Z, Trotti LM. Central disorders of hypersomnolence: focus on the narcolepsies and idiopathic hypersomnia. Chest. 2015;148(1):262–73.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Trotti LM, Saini P, Bliwise DL, Freeman AA, Jenkins A, Rye DB. Clarithromycin in η-aminobutyric acid-related hypersomnolence: a randomized, crossover trial. Ann Neurol. 2015;78(3):454–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Trotti LM, Saini P, Freeman AA, Bliwise DL, Garcia PS, Jenkins A, Rye DB. Improvement in daytime sleepiness with clarithromycin in patients with GABA-related hypersomnia: clinical experience. J Psychopharmacol. 2014;28(7):697–702.

    Article  CAS  PubMed  Google Scholar 

  25. Fujimoto M, Munakata M, Akaike N. Dual mechanisms of GABAA response inhibition by beta-lactam antibiotics in the pyramidal neurones of the rat cerebral cortex. Br J Pharmacol. 1995;116(7):3014–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Sugimoto M, Fukami S, Kayakiri H, et al. The β-lactam antibiotics, penicillin-G and cefoselis have different mechanisms and sites of action at GABAA receptors. Br J Pharmacol. 2002;135(2):427–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Behrends JC. Modulation by bicuculline and penicillin of the block by t-butyl-bicyclo-phosphorothionate (TBPS) of GABAA-receptor mediated Cl-current responses in rat striatal neurones. Br J Pharmacol. 2000;129(2):402–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Rossokhin AV, Sharonova IN, Bukanova JV, Kolbaev SN, Skrebitsky VG. Block of GABAA receptor ion channel by penicillin: electrophysiological and modeling insights toward the mechanism. Mol Cell Neurosci. 2014;63:72–82.

    Article  CAS  PubMed  Google Scholar 

  29. Hoigne-Lišpfe I, Jašhr M. Psychiatric symptoms after anesthesia: antibiomania or Hoigne’s syndrome? Paediatr Anaesth. 2006;16(4):498–9.

    Article  Google Scholar 

  30. Sugimoto M, Uchida I, Mashimo T, Yamazaki S, Hatano K, Ikeda F, Mochizuki Y, Terai T, Matsuoka N. Evidence for the involvement of GABAA receptor blockade in convulsions induced by cephalosporins. Neuropharmacology. 2003;45(3):304–14.

    Article  CAS  PubMed  Google Scholar 

  31. Yamazaki S, Mochizuki Y, Terai T, Sugimoto M, Uchida I, Matsuoka N, Mutoh S. Intracerebroventricular injection of the antibiotic cefoselis produces convulsion in mice via inhibition of GABA receptors. Pharmacol Biochem Behav. 2002;74(1):53–9.

    Article  CAS  PubMed  Google Scholar 

  32. Seiji H, Kanemitsu K, Shimada J. Effect of cephalosporins on y-aminobutyric acid receptor binding with or without non-steroidal anti-inflammatory drugs. J Antibiot. 1993;46(7):1145–8.

    Article  Google Scholar 

  33. Fugate JE, Kalimullah EA, Hocker SE, Clark SL, Wijdicks EF, Rabinstein AA. Cefepime neurotoxicity in the intensive care unit: a cause of severe, underappreciated encephalopathy. Crit Care. 2013;17(6):R264.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Kim S-Y, Lee I-S, Park SL, Lee J. Cefepime neurotoxicity in patients with renal insufficiency. Ann Rehabil Med. 2012;36(1):159–62.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Sunagawa M, Matsumura H, Sumita Y, Noud H. Structural features resulting in convulsive activity of carbapenem compounds: effect of C-2 side chain. J Antibiot. 1995;48(5):408–16.

    Article  CAS  PubMed  Google Scholar 

  36. Horiuchi M, Kimura M, Tokumura M, Hasebe N, Arai T, Abe K. Absence of convulsive liability of doripenem, a new carbapenem antibiotic, in comparison with β-lactam antibiotics. Toxicology. 2006;222(1–2):114–24.

    Article  CAS  PubMed  Google Scholar 

  37. Cannon JP, Lee TA, Clark NM, Setlak P, Grim SA. The risk of seizures among the carbapenems: a meta-analysis. J Antimicrob Chemother. 2014;69(8):2043–55.

    Article  CAS  PubMed  Google Scholar 

  38. Slama TG. Clinical review: balancing the therapeutic, safety, and economic issues underlying effective antipseudomonal carbapenem use. Crit Care. 2008;12(5):233.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Hornik CP, Herring AH, Benjamin DK, et al. Adverse events associated with meropenem versus imipenem/cilastatin therapy in a large retrospective cohort of hospitalized infants. Pediatr Infect Dis J. 2013;32(7):748–53.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Ilgin S, Can OD, Atli O, Ucel UI, Sener E, Guven I. Ciprofloxacin-induced neurotoxicity: evaluation of possible underlying mechanisms. Toxicol Mech Methods. 2015;25(5):374–81.

    Article  CAS  PubMed  Google Scholar 

  41. Marchand S, Pariat C, Bouquet S, Courtois P, Couet W. Pharmacokinetic-pharmacodynamic modelling of the convulsant interaction between norfloxacin and biphenyl acetic acid in rats. Br J Pharmacol. 2000;129(8):1609–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Pea F, Furlanut M. Pharmacokinetic aspects of treating infections in the intensive care unit: focus on drug interactions. Clin Pharmacokinet. 2001;40(11):833–68.

    Article  CAS  PubMed  Google Scholar 

  43. Koutsoviti-papadopoulou M, Nikolaidis E, Kounenis G. Biphenylacetic acid enhances the antagonistic action of fluoroquinolones on the gabaA-mediated responses of the isolated guinea-pig ileum. Pharmacol Res. 2001;44(3):229–33.

    Article  CAS  PubMed  Google Scholar 

  44. Akahane K, Kimura Y, Tsutomi Y, Hayakawa I. Possible intermolecular interaction between quinolones and biphenylacetic acid inhibits gamma-aminobutyric acid receptor sites. Antimicrob Agents Chemother. 1994;38(10):2323–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. De Sarro G, Nava F, Calapai G, De Sarro A. Effects of some excitatory amino acid antagonists and drugs enhancing gamma-aminobutyric acid neurotransmission on pefloxacin-induced seizures in DBA/2 mice. Antimicrob Agents Chemother. 1997;41(2):427–34.

    PubMed Central  PubMed  Google Scholar 

  46. Lally L, Mannion L. The potential for antimicrobials to adversely affect mental state. BMJ Case Rep. 2013;2013:bcr2013009659.

  47. Al Bu Ali WH. Ciprofloxacin-associated posterior reversible encephalopathy. BMJ Case Rep. 2013;2013:bcr2013008636.

  48. Shi J, Xu H. Moxifloxacin induced seizures -a case report. Iran J Public Health. 2014;43(9):1291–4.

    PubMed Central  PubMed  Google Scholar 

  49. Ahmed AIA, van der Heijden FMMA, van den Berkmortel H, Kramers K. A man who wanted to commit suicide by hanging himself: an adverse effect of ciprofloxacin. Gen Hosp Psychiatry. 2011;33(1):82.e5–e7.

  50. Labay-Kamara U, Manning S, McMahon T. Fluoroquinolone induced suicidal ideation and suicidality. Psychosomatics. 2012;53(1):97–8.

    Article  PubMed  Google Scholar 

  51. Steinert T, Studemund H. Acute delusional parasitosis under treatment with ciprofloxacin. Pharmacopsychiatry. 2006;39(4):159–60.

    Article  CAS  PubMed  Google Scholar 

  52. Ben-Chetrit E, Rothstein N, Munter G. Ciprofloxacin-induced psychosis. antimicrobial agents and chemotherapy. 2013;57(8):4079.

    Article  CAS  PubMed  Google Scholar 

  53. Chauhan U, Shanbag P, Kashid P. Ofloxacin-induced hallucinations. Indian J Pharmacol. 2013;45(2):189–90.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Koul S, Bhan-Kotwal S, Jenkins HS, Carmaciu CD. Organic psychosis induced by ofloxacin and metronidazole. Br J Hosp Med (Lond). 2009;70(4):236–7.

    Article  CAS  Google Scholar 

  55. Reeves RR. Ciprofloxacin-induced psychosis. Ann Pharmacother. 1992;26(7–8):930–1.

    Article  CAS  PubMed  Google Scholar 

  56. Bhalerao S, Talsky A, Hansen K, Kingstone E, Schroeder B, Karim Z, Fung I. Ciprofloxacin-induced manic episode. Psychosomatics. 2006;47(6):539–40.

    Article  PubMed  Google Scholar 

  57. Abouesh A, Stone C, Hobbs WR. Antimicrobial-induced mania (antibiomania): a review of spontaneous reports. J Clin Psychopharmacol. 2002;22:71–81.

    Article  PubMed  Google Scholar 

  58. Carbon C. Comparison of side effects of levofloxacin versus other fluoroquinolones. Chemotherapy. 2001;47(Suppl 3):9–14 (discussion 44–8).

    Article  CAS  PubMed  Google Scholar 

  59. Medford AR. Fluoroquinolones and theophylline can also lower the seizure threshold. BMJ. 2012;6(345):e5304.

    Article  Google Scholar 

  60. Jindal A, Mahesh R, Kumar B. Anxiolytic-like effect of linezolid in experimental mouse models of anxiety. Prog Neuropsychopharmacol Biol Psychiatry. 2013;40(10):47–53.

    Article  CAS  PubMed  Google Scholar 

  61. Packer S, Berman S. Serotonin syndrome precipitated by the monoamine oxidase inhibitor linezolid. Am J Psychiatry. 2007;164(2):346–7.

    Article  PubMed  Google Scholar 

  62. Samartzis L, Savvari P, Kontogiannis S, Dimopoulos S. Linezolid is associated with serotonin syndrome in a patient receiving amitriptyline, and fentanyl: a case report and review of the literature. Case Rep Psychiatry. 2013;2013:617251.

    PubMed Central  PubMed  Google Scholar 

  63. Lodise TP, Patel N, Rivera A, et al. Comparative evaluation of serotonin toxicity among veterans affairs patients receiving linezolid and vancomycin. Antimicrob Agents Chemother. 2013;57(12):5901–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Kulkarni RR, Kulkarni PR. Linezolid-induced near-fatal serotonin syndrome during escitalopram therapy: case report and review of literature. Indian J Psychol Med. 2013;35(4):413–6.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Morales N, Vermette H. Serotonin syndrome associated with linezolid treatment after discontinuation of fluoxetine. Psychosomatics. 2005;46(3):274–5.

    Article  PubMed  Google Scholar 

  66. Das PK, Warkentin DI, Hewko R, Forrest DL. Serotonin syndrome after concomitant treatment with linezolid and meperidine. Clin Infect Dis. 2008;46(2):264–5.

    Article  PubMed  Google Scholar 

  67. Flanagan S, Bartizal K, Minassian SL, Fang E, Prokocimer P. In vitro, in vivo, and clinical studies of tedizolid to assess the potential for peripheral or central monoamine oxidase interactions. Antimicrob Agents Chemother. 2013;57(7):3060–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Naruganahalli KS, Shirumalla RK, Bansal V, Gupta JB, Das B, Ray A. Ranbezolid, a novel oxazolidinone antibacterial: in vivo characterisation of monoamine oxidase inhibitory potential in conscious rats. Eur J Pharmacol. 2006;545(2–3):167–72.

    Article  CAS  PubMed  Google Scholar 

  69. Jayaprakash V, Sinha BN, Ucar G, Ercan A. Pyrazoline-based mycobactin analogues as MAO-inhibitors. Bioorg Med Chem Lett. 2008;18(24):6362–8.

    Article  CAS  PubMed  Google Scholar 

  70. Phillips OA, Udo EE, Abdel-Hamid ME, Varghese R. Synthesis and antibacterial activity of novel 5-(4-methyl-1H-1,2,3-triazole) methyl oxazolidinones. Eur J Med Chem. 2009;44(8):3217–27.

    Article  CAS  PubMed  Google Scholar 

  71. Butterfield JM, Lawrence KR, Reisman A, Huang DB, Thompson CA, Lodise TP. Comparison of serotonin toxicity with concomitant use of either linezolid or comparators and serotonergic agents: an analysis of Phase III and IV randomized clinical trial data. J Antimicrob Chemother. 2012;67(2):494–502.

    Article  CAS  PubMed  Google Scholar 

  72. Morales-Molina JA, Antonio JM-D, Marín-Casino M, Grau S. Linezolid-associated serotonin syndrome: what we can learn from cases reported so far. J Antimicrob Chemother. 2005;56(6):1176–8.

    Article  CAS  PubMed  Google Scholar 

  73. Lawrence KR, Adra M, Gillman PK. Serotonin toxicity associated with the use of linezolid: a review of postmarketing data. Clin Infect Dis. 2006;42(11):1578–83.

    Article  CAS  PubMed  Google Scholar 

  74. Rumore MM, Roth M, Orfanos A. Dietary tyramine restriction for hospitalized patients on linezolid: an update. Nutr Clin Pract. 2010;25(3):265–9.

    Article  PubMed  Google Scholar 

  75. Preziosi P. Isoniazid: metabolic aspects and toxicological correlates. Curr Drug Metab. 2007;8(8):839–51.

    Article  CAS  PubMed  Google Scholar 

  76. Naidu PS, Kulkarni SK. Differential role of dopamine D1 and D2 receptors in isoniazid-induced vacuous chewing movements. Methods Find Exp Clin Pharmacol. 2000;22(10):747–51.

    Article  CAS  PubMed  Google Scholar 

  77. Rya S, Sukhija G, Singh H. Acute psychosis after recent isoniazid initiation. J Clin Diagn Res JCDR. 2015;9(6):VD01–VD02.

  78. Lheureux P, Penaloza A, Gris M. Pyridoxine in clinical toxicology: a review. Eur J Emerg Med. 2005;12(2):78–85.

    Article  PubMed  Google Scholar 

  79. Romero JA, Kuczler FJ Jr. Isoniazid overdose: recognition and management. Am Fam Physician. 1998;57(4):749–52.

    CAS  PubMed  Google Scholar 

  80. Neurotoxic effects of isoniazid. Br Med J. 1958;1(5075):880–1.

  81. Burak BM, Serpil E, Tezan B, Bylent K. Isoniazid-induced psychosis with obsessive-compulsive symptoms (schizo-obsessive disorder) in a female child. J Child Adolesc Psychopharmacol. 2015;25(10):819–20.

    Article  Google Scholar 

  82. Sharma GS, Gupta PK, Jain NK, Shanker A, Nanawati V. Toxic psychosis to isoniazid and ethionamide in a patient with pulmonary tuberculosis. Tubercle. 1979;60(3):171–2.

    Article  CAS  PubMed  Google Scholar 

  83. Qu C, Li X, Zheng Z, Zhu J. Successful diagnosis of hyperpyrexia induced by isoniazid in a child with suspected extra-pulmonary tuberculosis. Int J Clin Exp Med. 2015;8(5):8249–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Sun C, Li X-X, He X-J, Zhang Q, Tao Y. Neuroprotective effect of minocycline in a rat model of branch retinal vein occlusion. Exp Eye Res. 2013;113:105–16.

    Article  CAS  PubMed  Google Scholar 

  85. Regen F, Hildebrand M, Le Bret N, Herzog I, Heuser I, Hellmann-Regen J. Inhibition of retinoic acid catabolism by minocycline: evidence for a novel mode of action? Exp Dermatol. 2015;24(6):473–6.

    Article  CAS  PubMed  Google Scholar 

  86. Campbell LJ, Willoughby JJ, Jensen AM. Two types of tet-on transgenic lines for doxycycline-inducible gene expression in zebrafish rod photoreceptors and a gateway-based tet-on toolkit. PLoS One. 2012;7(12):e51270.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Månsson R, Hansson MJ, Morota S, Uchino H, Ekdahl CT, Elmér E. Re-evaluation of mitochondrial permeability transition as a primary neuroprotective target of minocycline. Neurobiol Dis. 2007;25(1):198–205.

    Article  PubMed  CAS  Google Scholar 

  88. Munzar P, Li H, Nicholson KL, Wiley JL, Balster RL. Enhancement of the discriminative stimulus effects of phencyclidine by the tetracycline antibiotics doxycycline and minocycline in rats. Psychopharmacology (Berl). 2002;160(3):331–6.

    Article  CAS  PubMed  Google Scholar 

  89. Makuch W, Mika J, Rojewska E, Zychowska M, Przewlocka B. Effects of selective and non-selective inhibitors of nitric oxide synthase on morphine- and endomorphin-1-induced analgesia in acute and neuropathic pain in rats. Neuropharmacology. 2013;75:445–57.

    Article  CAS  PubMed  Google Scholar 

  90. Atigari OV, Hogan C, Healy D. Doxycycline and suicidality. BMJ Case Rep. 2013. doi:10.1136/bcr-2013-200723.

  91. Baratta JM, Dyck PJB, Brand P, Thaisetthawatkul P, Dyck PJ, Engelstad JK, et al. Vasculitic neuropathy following exposure to minocycline. Neurol Neuroimmunol Neuroinflamm. 2016;3(1):e180.

  92. Rasmussen S, Imitola J, Ayuso-Sacido A, et al. Reversible neural stem cell niche dysfunction in a model of multiple sclerosis. Ann Neurol. 2011;69(5):878–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Chen X, Ma X, Jiang Y, Pi R, Liu Y, Ma L. The prospects of minocycline in multiple sclerosis. J Neuroimmunol. 2011;235(1–2):1–8.

    Article  CAS  PubMed  Google Scholar 

  94. Dunn G, Deakin B. Minocycline benefits negative symptoms in early schizophrenia: a randomised double-blind placebo-controlled clinical trial in patients on standard treatment. 1. J Psychopharmacol. 2012;26(9):1185–93.

    Article  PubMed  CAS  Google Scholar 

  95. Liu F, Guo X, Wu R, Ou J, Zheng Y, Zhang B, Xie L, Zhang L, Yang L, Yang S, Yang J, Ye Y, Zeng Y, Xu X, Zhao J. Minocycline supplementation for treatment of negative symptoms in early-phase schizophrenia: a double blind, randomized, controlled trial. Schizophr Res. 2014;153(1–3):169–76.

    Article  PubMed  Google Scholar 

  96. Kumar H, Sharma B. Minocycline ameliorates prenatal valproic acid induced autistic behaviour, biochemistry and blood brain barrier impairments in rats. Brain Res. 2016;1630(1):83–97.

    Article  CAS  PubMed  Google Scholar 

  97. Pardo CA, Buckley A, Thurm A, et al. A pilot open-label trial of minocycline in patients with autism and regressive features. J Neurodev Disord. 2013;5(1):9.

    Article  PubMed Central  PubMed  Google Scholar 

  98. Savitz J, Preskorn S, Teague TK, Drevets D, Yates W, Drevets W. Minocycline and aspirin in the treatment of bipolar depression: a protocol for a proof-of-concept, randomised, double-blind, placebo-controlled, 2 × 2 clinical trial. BMJ Open. 2012;2(1):e000643.

    Article  PubMed Central  PubMed  Google Scholar 

  99. Husain MI, Chaudhry IB, Rahman RR, et al. Minocycline as an adjunct for treatment-resistant depressive symptoms: study protocol for a pilot randomised controlled trial. Trials. 2015;16:410.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  100. Saidinejad M, Ewald MB, Shannon MW. Transient psychosis in an immune-competent patient after oral trimethoprim–sulfamethoxazole administration. Pediatrics. 2005;115(6):e739–41.

    Article  PubMed  Google Scholar 

  101. Weis S, Karagülle D, Kornhuber J, Bayerlein K. Cotrimoxazole-induced psychosis: a case report and review of literature. Pharmacopsychiatry. 2006;39(6):236–7.

    Article  CAS  PubMed  Google Scholar 

  102. Stuhec M. Trimethoprim-sulfamethoxazole-related hallucinations. Gen Hospital Psychiatry. 2014;36(2):230.e7–230.e8.

  103. Lee K-Y, Huang C-H, Tang H-J, Yang C-J, Ko W-C, Chen Y-H, Lee Y-C, Hung C-C. Acute psychosis related to use of trimethoprim/sulfamethoxazole in the treatment of HIV-infected patients with Pneumocystis jirovecii pneumonia: a multicentre, retrospective study. J Antimicrob Chemother. 2012;67(11):2749–54.

    Article  CAS  PubMed  Google Scholar 

  104. River Y, Averbuch-Heller L, Weinberger M, Meiner Z, Mevorach D, Schlesinger I, Argov Z. Antibiotic induced meningitis. J Neurol Neurosurg Psychiatry. 1994;57:705–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Shibre T, Alem A, Abdulahi A, et al. Trimethoprim as adjuvant treatment in schizophrenia: a double-blind, randomized, placebo-controlled clinical trial. Schizophr Bull. 2010;36(4):846–51.

    Article  PubMed  Google Scholar 

  106. Sevy A, Moyse E, Million M, Battaglia F. Central and peripheral neurotoxicity of metronidazole after treatment for brain abscess. Acta Neurochirurgica. 2011;153(12):2491–2.

    Article  PubMed  Google Scholar 

  107. Puri V. Metronidazole neurotoxicity. Neurol India. 2011;2011:4–5.

    Article  Google Scholar 

  108. Moosa ANV, Perkins D. MRI of metronidazole induced cerebellar ataxia. J Neurol Neurosurg Psychiatry. 2010;81(7):754–5.

    Article  PubMed  Google Scholar 

  109. Park KI, Chung JM, Kim JY. Metronidazole neurotoxicity: sequential neuroaxis involvement. Neurol India. 2011;59:104–7.

    Article  PubMed  Google Scholar 

  110. Petersen DR, Hjelle JJ. Metabolic interactions of aldehyde dehydrogenase with therapeutic and toxic agents. Prog Clin Biol Res. 1982;114:103–20.

    CAS  PubMed  Google Scholar 

  111. Visapää JP, Tillonen JS, Kaihovaara PS, Salaspuro MP. Lack of disulfiram-like reaction with metronidazole and ethanol. Ann Pharmacother. 2002;36(6):971–4.

    Article  PubMed  Google Scholar 

  112. Befani O, Grippa E, Saso L, Turini P, Mondovì B. Inhibition of monoamine oxidase by metronidazole. Inflamm Res. 2001;50(Suppl 2):S136–7.

    CAS  PubMed  Google Scholar 

  113. Knorr JP, Javed I, Sahni N, Cankurtaran CZ, Ortiz JA. Metronidazole-induced encephalopathy in a patient with end-stage liver disease. Case Rep Hepatol. 2012;2012:209258.

    Google Scholar 

  114. Yamamoto T, Abe K, Anjiki H, Ishii T, Kuyama Y. Metronidazole-induced neurotoxicity developed in liver cirrhosis. J Clin Med Res. 2012;4(4):295–8.

    PubMed Central  PubMed  Google Scholar 

  115. Casagrande Tango R. Psychiatric side effects of medications prescribed in internal medicine. Dialog Clin Neurosci. 2003;5(2):155–65.

    Google Scholar 

  116. Salafia A, Candida. Rifampicin induced flu-syndrome and toxic psychosis. Indian J Lepr. 1992;64(4):537–9.

  117. Oida Y, Kitaichi K, Nakayama H, Ito Y, Fujimoto Y, Shimazawa M, Nagai H, Hara H. Rifampicin attenuates the MPTP-induced neurotoxicity in mouse brain. Brain Res. 2006;1082(1):196–204.

    Article  CAS  PubMed  Google Scholar 

  118. Tomiyama T, Shoji A, Kataoka K, Suwa Y, Asano S, Kaneko H, Endo N. Inhibition of amyloid beta protein aggregation and neurotoxicity by rifampicin. Its possible function as a hydroxyl radical scavenger. J Biol Chem. 1996;271(12):6839–44.

    Article  CAS  PubMed  Google Scholar 

  119. Prasad R, Garg R, Verma SK. Isoniazid- and ethambutol-induced psychosis. Ann Thorac Med. 2008;3(4):149–51.

    Article  CAS  PubMed  Google Scholar 

  120. Kinoshita J, Iwata N, Maejima T, Kimotsuki T, Yasuda M. Retinal function and morphology in monkeys with ethambutol-induced optic neuropathy. Invest Ophthalmol Vis Sci. 2012;53(11):7052–62.

    Article  PubMed  Google Scholar 

  121. Uzar E, Varol S, Acar A, Firat U, Basarslan SK, Evliyaoglu O, Yucel Y, Alp H, Gškalp O. Assesment the role of oxidative stress and efficacy of caffeic acid phenethyl ester (CAPE) on neurotoxicity induced by isoniazidand ethambutol in a rat model. Eur Rev Med Pharmacol Sci. 2014;18(19):2953–9.

    CAS  PubMed  Google Scholar 

  122. Kantrowitz JT, Halberstam B, Gangwisch J. Single-dose ketamine followed by daily d-cycloserine in treatment-resistant bipolar depression. J Clin Psychiatry. 2015;76(6):737–8.

    Article  PubMed  Google Scholar 

  123. Gottlieb JD, Cather C, Shanahan M, Creedon T, Macklin EA, Goff DC. d-Cycloserine facilitation of cognitive behavioral therapy for delusions in schizophrenia. Schizophr Res. 2011;131(1–3):69–74.

    Article  PubMed Central  PubMed  Google Scholar 

  124. Goff DC, Henderson DC, Evins AE, Amico E. A placebo-controlled crossover trial of d-cycloserine added to clozapine in patients with schizophrenia. Biol Psychiatry. 1999;45(4):512–4.

    Article  CAS  PubMed  Google Scholar 

  125. Javitt DC, Zukin SR, Heresco-Levy U, Umbricht D. Has an angel shown the way? Etiological and therapeutic implications of the PCP/NMDA model of schizophrenia. Schizophr Bull. 2012;38(5):958–66.

    Article  PubMed Central  PubMed  Google Scholar 

  126. Ho Y-J, Ho S-H, Pawlak CR, Yeh K-Y. Effects of d-cycloserine on MPTP-induced behavioral and neurological changes: potential for treatment of Parkinson’s disease dementia. Behav Brain Res. 2011;219(2):280–90.

    Article  CAS  PubMed  Google Scholar 

  127. Schade S, Paulus W. D-Cycloserine in neuropsychiatric diseases: a systematic review. Int J Neuropsychopharmacol. 2016;19(4):pyv102.

  128. Tandon VR, Rani N, Roshi, et al. Cycloserine induced psychosis with hepatic dysfunction. Indian J Pharmacol. 2015;47(2):230–1.

    Article  PubMed Central  PubMed  Google Scholar 

  129. Holla S, Amberkar MB, Bhandarypanambur R, Kamalkishore M, Janardhanan M. Cycloserine induced late onset psychosis and ethambutol induced peripheral neuropathy associated with MDR-TB treatment in an indian patient—a rare case report. J Clin Diagn Res. 2015;9(2):FD01–03.

  130. Leggeri G. Case report of a psychosis caused by streptomycin. Rass Neuropsichiatr. 1951;5(2):98–106.

    CAS  PubMed  Google Scholar 

  131. Kane FJ Jr, Byrd G. Acute toxic psychosis associated with gentamicin therapy. South Med J. 1975;68(10):1283–5.

    Article  PubMed  Google Scholar 

  132. Manev R, Manev H. Aminoglycoside antibiotics and autism: a speculative hypothesis. BMC Psychiatry. 2001;1:5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  133. Watanabe I, Hodges GR, Dworzack DL, Kepes JJ, Duensing GF. Neurotoxicity of intrathecal gentamicin: a case report and experimental study. Ann Neurol. 1978;4(6):564–72.

    Article  CAS  PubMed  Google Scholar 

  134. Segal JA, Harris BD, Kustova Y, Basile A, Skolnick P. Aminoglycoside neurotoxicity involves NMDA receptor activation. Brain Res. 1999;815(2):270–7.

    Article  CAS  PubMed  Google Scholar 

  135. Poblano A, Belmont A, Sosa J, Ibarra J, Vargas AM, Liman G, Martinez C. Amikacin alters auditory brainstem conduction time in newborns. J Perinat Med. 2003;31(3):237–41.

    Article  CAS  PubMed  Google Scholar 

  136. Liu C, Hu F. Investigation on the mechanism of exacerbation of myasthenia gravis by aminoglycoside antibiotics in mouse model. J Huazhong Univ Sci Technolog Med Sci. 2005;25(3):294–6.

    Article  CAS  PubMed  Google Scholar 

  137. Forouzesh A, Moise PA, Sakoulas G. Vancomycin ototoxicity: a reevaluation in an era of increasing doses. Antimicrob Agents Chemother. 2009;53(2):483–6.

    Article  CAS  PubMed  Google Scholar 

  138. Gomes DM, Ward KE, LaPlante KL. Clinical implications of vancomycin heteroresistant and intermediately susceptible Staphylococcus aureus. Pharmacotherapy. 2015;35(4):424–32.

    Article  PubMed  CAS  Google Scholar 

  139. Bayston R, Hart CA, Barnicoat M. Intraventricular vancomycin in the treatment of ventriculitis associated with cerebrospinal fluid shunting and drainage. J Neurol Neurosurg Psychiatry. 1987;50(11):1419–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  140. Losonsky GA, Wolf A, Schwalbe RS, Nataro J, Gibson CB, Lewis EW. Successful treatment of meningitis due to multiply resistant Enterococcus faecium with a combination of intrathecal teicoplanin and intravenous antimicrobial agents. Clin Infect Dis. 1994;19(1):163–5.

    Article  CAS  PubMed  Google Scholar 

  141. Sauermann R, Rothenburger M, Graninger W, Joukhadar C. Daptomycin: a review 4 years after first approval. Pharmacology. 2008;81(2):79–91.

    Article  CAS  PubMed  Google Scholar 

  142. Odero RO, Cleveland KO. Gelfand MS Rhabdomyolysis and acute renal failure associated with the co-administration of daptomycin and an HMG-CoA reductase inhibitor1. J Antimicrob Chemother. 2009;63(6):1299–300.

    Article  CAS  PubMed  Google Scholar 

  143. Sbrana F, Di Paolo A, Pasanisi EM, Tagliaferri E, Arvia C, Puntoni M, Leonildi A, Bigazzi F, Danesi R, Rovai D, Tascini C, Menichetti F. Administration interval and daptomycin toxicity: a case report of rhabdomyolysis. J Chemother. 2010;22(6):434–5.

    Article  CAS  PubMed  Google Scholar 

  144. King ST, Walker ED, Cannon CG, Finley RW. Daptomycin-induced rhabdomyolysis and acute liver injury. Scand J Infect Dis. 2014;46(7):537–40.

    Article  PubMed  Google Scholar 

  145. Denetclaw TH, Suehiro I, Wang PK, Tolliver GL. Successful treatment of ventriculostomy-associated meningitis caused by multidrug resistant coagulase-negative Staphylococcus epidermidis using low-volume intrathecal daptomycin and loading strategy. Ann Pharmacother. 2014;48(10):1376–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr George Gargoulas for his moral support in the initial stages of this work and his contribution to the project’s inception.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Zareifopoulos.

Ethics declarations

Conflict of interest

Nicholas Zareifopoulos and George Panayiotakopoulos have no conflicts of interest to declare.

Funding

No funding was received for this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zareifopoulos, N., Panayiotakopoulos, G. Neuropsychiatric Effects of Antimicrobial Agents. Clin Drug Investig 37, 423–437 (2017). https://doi.org/10.1007/s40261-017-0498-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40261-017-0498-z

Keywords

Navigation