Skip to main content
Log in

Kinetics of pyrolysis of some biomasses widely available in Brazil

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Biomass conversion via thermal processes to generate energy will be an important part of the future energy landscape. The objective of this study was to determine the kinetic parameters of five types of eucalyptus wood derived from different clones, sugarcane bagasse, elephant grass, bamboo and fibers of coconut fruit. The framework to describe the kinetic pyrolysis consists of a fuel model including four constituents, namely hemicelluloses, cellulose, lignin and extractives. Each pseudo-component was converted via two competing reactions into volatile and char. A statistical fit was achieved with mass loss rate data, obtained from the pyrolysis modeling and the thermogravimetric analysis, providing satisfactory statistical variance. In the end of the kinetic parameters optimization, the activation energies for reaction of hemicelluloses, cellulose and lignin were obtained as 179.98, 130.0 and 40 kJ mol−1, respectively, whereas the decomposition of the pseudo-components resulted in relatively similar values of pre-exponential factor for all biomasses evaluated. The experimental results and kinetic parameters provide useful data to improve design of thermochemical conversion units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. EPE (Empresa de pesquisa Energética). Brazilian energy balance; Year 2014. Rio de Janeiro: MME (Ministry of Mines and Energy); 2015.

    Google Scholar 

  2. EPE (Empresa de pesquisa Energética). Demanda de Energia 2050. Rio de Janeiro: MME (Ministerio de Minas e Energia); 2014.

    Google Scholar 

  3. Demirbas A. Importance of biomass energy sources for Turkey. Energy Policy. 2008;36:834–42.

    Article  Google Scholar 

  4. Demirbas A. Biofuels: Securing the Planet’s Future Energy Needs, Green Energy and Tecnology. Springer: London; 2009.

    Book  Google Scholar 

  5. MMA (Ministério do Meio Ambiente). Plano nacional de resíduos sólidos. Governo Federal - Ministério do Meio Ambiente: Brasília; 2011.

    Google Scholar 

  6. Basu P. Biomass gasification and pyrolysis: practical design and theory. Cambridge: Academic Press; 2010.

    Google Scholar 

  7. Bridgwater AV. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy. 2012;38:68–94.

    Article  CAS  Google Scholar 

  8. Quan C, Gao N, Song Q. Pyrolysis of biomass components in a TGA and a fixed-bed reactor: thermochemical behaviors, kinetics, and product characterization. J Anal Appl Pyrolysis. 2016;121:84–92.

    Article  CAS  Google Scholar 

  9. Burhenne L, Messmer J, Aicher T, Laborie M-P. The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis. J Anal Appl Pyrolysis. 2013;101:177–84.

    Article  CAS  Google Scholar 

  10. Blanco A, Chejne F. Modeling and simulation of biomass fast pyrolysis in a fluidized bed reactor. J Anal Appl Pyrolysis. 2016;118:105–14.

    Article  CAS  Google Scholar 

  11. Fateh T, Rogaume T, Luche J, Richard F, Jabouille F. Modeling of the thermal decomposition of a treated plywood from thermo-gravimetry and Fourier-transformed infrared spectroscopy experimental analysis. J Anal Appl Pyrolysis. 2013;101:35–44.

    Article  CAS  Google Scholar 

  12. Pasangulapati V, Ramachandriya KD, Kumar A, Wilkins MR, Jones CL, Huhnke RL. Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass. Bioresour Technol. 2012;114:663–9.

    Article  CAS  Google Scholar 

  13. Ferrara F, Orsini A, Plaisant A, Pettinau A. Pyrolysis of coal, biomass and their blends: performance assessment by thermogravimetric analysis. Bioresour Technol. 2014;171:433–41.

    Article  CAS  Google Scholar 

  14. Akhtar J, Amin NS. A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renew Sustain Energy Rev. 2012;16:5101–9.

    Article  CAS  Google Scholar 

  15. Wang Y, Wu L, Wang C, Yu J, Yang Z. Investigating the influence of extractives on the oil yield and alkane production obtained from three kinds of biomass via deoxy-liquefaction. Bioresour Technol. 2011;102:7190–5.

    Article  CAS  Google Scholar 

  16. Sungsuk P, Chayaporn S, Sunphorka S, Kuchonthara P, Piumsomboon P, Chalermsinsuwan B. Prediction of pyrolysis kinetic parameters from biomass constituents based on simplex-lattice mixture design. Chin J Chem Eng. 2016;24:535–42.

    Article  CAS  Google Scholar 

  17. Peters B. Prediction of pyrolysis of pistachio shells based on its components hemicellulose, cellulose and lignin. Fuel Process Technol. 2011;92:1993–8.

    Article  CAS  Google Scholar 

  18. El-Sayed SA, Mostafa ME. Pyrolysis characteristics and kinetic parameters determination of biomass fuel powders by differential thermal gravimetric analysis (TGA/DTG). Energy Convers Manag. 2014;85:165–72.

    Article  Google Scholar 

  19. Mantilla SV, Gauthier-Maradei P, Gil PA, Cárdenas ST. Comparative study of bio-oil production from sugarcane bagasse and palm empty fruit bunch: yield optimization and bio-oil characterization. J Anal Appl Pyrolysis. 2014;108:284–94.

    Article  Google Scholar 

  20. Chang SH. An overview of empty fruit bunch from oil palm as feedstock for bio-oil production. Biomass Bioenergy. 2014;62:174–81.

    Article  CAS  Google Scholar 

  21. Doumer ME, Arízaga GGC, da Silva DA, Yamamoto CI, Novotny EH, Santos JM, dos Santos LO, Wisniewski JA, Andrade JB, Mangrich AS. Slow pyrolysis of different Brazilian waste biomasses as sources of soil conditioners and energy, and for environmental protection. J Anal Appl Pyrolysis. 2015;113:434–43.

    Article  CAS  Google Scholar 

  22. Hu M, Chen Z, Wang S, Guo D, Ma C, Zhou Y, Chen J, Laghari M, Fazal S, Xiao B, Zhang B, Ma S. Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser–Suzuki deconvolution, and iso-conversional method. Energy Convers Manag. 2016;118:1–11.

    Article  CAS  Google Scholar 

  23. Lee Y, Park J, Ryu C, Gang KS, Yang W, Park Y-K, Jung J, Hyun S. Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 °C. Bioresource Technol. 2013;148:196–201.

    Article  CAS  Google Scholar 

  24. Basile L, Tugnoli A, Stramigioli C, Cozzani V. Thermal effects during biomass pyrolysis. Thermochim Acta. 2016;636:63–70.

    Article  CAS  Google Scholar 

  25. Rocha EPA, Gomes FJB, Sermyagina E, Cardoso M, Colodette JL. Analysis of Brazilian biomass focusing on thermochemical conversion for energy production. Energy Fuels. 2015;29(12):7975–84.

    Article  CAS  Google Scholar 

  26. Gomes FJB. Estudos de Caracterização e Desconstrução de Biomassa de Eucalipto e Capim Elefante para Aplicações em Biorrefinaria Integrada a Indústria de Celulose. Ph.D. Thesis, Federal University of Viçosa; 2013 (in Portuguese).

  27. Cellier FE, Kofman E. Continuous system simulation. Boston: Kluwer Academic Publishers; 2006.

    Google Scholar 

  28. Varziri MS, McAuley KB, McLellan PJ. Approximate maximum likelihood parameter estimation for nonlinear dynamic models: application to a laboratory-scale nylon reactor model. Ind Eng Chem Res. 2008;47:7274–83.

    Article  CAS  Google Scholar 

  29. Lee T-S, Radak BK, Pabis A, York DM. A new maximum likelihood approach for free energy profile construction from molecular simulations. J Chem Theory Comput. 2013;9:153–64.

    Article  CAS  Google Scholar 

  30. Mui ELK, Cheung WH, Lee VKC, McKay G. Kinetic study on bamboo pyrolysis. Ind Eng Chem Res. 2008;47:5710–22.

    Article  CAS  Google Scholar 

  31. Grønli MG, Várhegyi G, Di Blasi C. Thermogravimetric analysis and devolatilization kinetics of wood. Ind Eng Chem Res. 2002;41:4201–8.

    Article  Google Scholar 

  32. Li KY, Pau DSW, Hou YN, Ji J. Modeling pyrolysis of charring materials: determining kinetic properties and heat of pyrolysis of medium density fiberboard. Ind Eng Chem Res. 2014;53:141–9.

    Article  CAS  Google Scholar 

  33. Tapasvi D, Khalil R, Várhegyi G, Tran K-Q, Grønli M, Skeiberg Ø. Thermal decomposition kinetics of woods with an emphasis on torrefaction. Energy Fuels. 2013;27:6134–45.

    Article  CAS  Google Scholar 

  34. Branca C, Di Blasi C. Kinetics of the isothermal degradation of wood in the temperature range 528–708 K. J Anal Appl Pyrolysis. 2003;67:207–19.

    Article  CAS  Google Scholar 

  35. Becidan M, Várhegyi G, Hustad JE, Skreiberg Ø. Thermal decomposition of biomass wastes. a kinetic study. Ind Eng Chem Res. 2007;46:2428–37.

    Article  CAS  Google Scholar 

  36. Medrano JAL, Martínez DB, la Rosa JRD, Pedraza ESCP, Flores-Escamilla GA, Ciuta S. Particle pyrolysis modeling and thermal characterization of pecan nutshell. J Therm Anal Calorim. 2016;126:969–79.

    Article  Google Scholar 

  37. Wang G, Li W, Li B, Chen H. TG study on pyrolysis of biomass and its three components under syngas. Fuel. 2008;87:552–8.

    Article  CAS  Google Scholar 

  38. Jeguirim M, Trouvé G. Pyrolysis characteristics and kinetics of Arundo donax using thermogravimetric analysis. Bioresour Technol. 2009;100:4026–31.

    Article  CAS  Google Scholar 

  39. Vamvuka D, Kakaras E, Kastanaki E, Grammelis P. Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite. Fuel. 2003;82:1949–60.

    Article  CAS  Google Scholar 

  40. Aboyade AO, Hugo TJ, Carrier M, et al. Non-isothermal kinetic analysis of the devolatilization of corn cobs and sugar cane bagasse in an inert atmosphere. Thermochim Acta. 2011;517:81–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank CAPES and CNPq under Process Number 490243/2012-6 for the financial support for this work, and Prof. Maria Irene Yoshida for his knowledge and technical support in the thermogravimetric analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elém Patrícia Alves Rocha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha, E.P.A., Sermyagina, E., Vakkilainen, E. et al. Kinetics of pyrolysis of some biomasses widely available in Brazil. J Therm Anal Calorim 130, 1445–1454 (2017). https://doi.org/10.1007/s10973-017-6138-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6138-2

Keywords

Navigation