Skip to main content
Log in

Comparison of the Rhodotorula mucilaginosa Biofilm and Planktonic Culture on Heavy Metal Susceptibility and Removal Potential

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study compares the effect of heavy metals (Hg2+, Cu2+, and Pb2+) on the Rhodotorula mucilaginosa and Saccharomyces boulardii biofilm and planktonic cells. A MBECTM-HTP assay was used to test the levels of tolerance to heavy metals. The minimum inhibitory concentration (MICp) and minimum lethal concentration (MLCp) of the R. mucilaginosa and S. boulardii planktonic cells were determined, as well as minimum biofilm eradication concentration (MBEC). Metal removal efficiency was determined by batch biosorption assay. Previous studies had focused on heavy metal tolerance and removal efficiency of planktonic cells from Rhodotorula species only. Hence, our study presents and compares results for metal tolerance and removal efficiency of the R. mucilaginosa planktonic cells and biofilm. Biofilm tolerance was higher than the planktonic cells. The R. mucilaginosa planktonic cells showed the tolerance in the presence of Hg2+ (MICp 0.08 mM), Cu2+ (MICp 6.40 mM), and Pb2+ (MICp 3.51 mM), while the S. boulardii planktonic cells only tolerated Pb2+ (MICp 0.43 mM). The R. mucilaginosa biofilm showed the highest tolerance in the presence of Hg2+ (MBEC >0.31 mM), Cu2+(MBEC >12.81 mM), Pb2+ (MBEC >7.12 mM), and obtained results were confirmed by fluorescence microscopy. S. boulardii did not show potential in biofilm formation. The R. mucilaginosa biofilm exhibited better efficiency in removal of all tested metals than the planktonic cells. Metal removal efficiency was in the range from 4.79–10.25% for planktonic cells and 91.71–95.39% for biofilm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. “The fold tolerance is equal to the ratio of the means of MLCB:MLCP” (Harrison et al. 2006).

References

  • Al-Enzi, R. M., & Al-Charrakh, A. H. (2015). Heavy metals resistance of Pseudomonas aeruginosa isolated from clinical and environmental sources in Hilla city. Medical Journal of Babylon, 10(1), 110–119.

    Google Scholar 

  • Basak, G., Lakshmi, V., Chandran, P., & Das, N. (2014). Removal of Zn (II) from electroplating effluent using yeast biofilm formed on gravels: batch and column studies. Journal of Environmental Health Science and Engineering, 12(8), 1–11. doi:10.1186/2052-336X-12-8.

    Google Scholar 

  • Booth, S. C., Workentine, M. L., Wen, J., Shaykhutdinov, R., Vogel, H. J., Ceri, H., Turner, R. J., & Weljie, A. M. (2011). Differences in metabolism between the biofilm and planktonic response to metal stress. Journal of Proteome Research, 10(7), 3190–3199.

    Article  CAS  Google Scholar 

  • Ceri, H., Olson, M. E., Stremick, C., Read, R. R., Morck, D., & Buret, A. (1999). The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. Journal of Clinical Microbiology, 37(6), 1771–1776.

    CAS  Google Scholar 

  • Chipasa, K. B. (2003). Accumulation and fate of selected heavy metals in a biological wastewater treatment system. Waste Management, 23(2), 135–143.

    Article  CAS  Google Scholar 

  • Dönmez, G., & Aksu, Z. (2001). Bioaccumulation of copper (II) and nickel (II) by the non-adapted and adapted growing Candida sp. Water Research, 35(6), 1425–1434.

    Article  Google Scholar 

  • Ehrlich, H. L. (1997). Microbes and metals. Applied Microbiology and Biotechnology, 48(6), 687–692.

    Article  CAS  Google Scholar 

  • Gadd, G. M. (2004). Microbial influence on metal mobility and application for bioremediation. Geoderma, 122(2), 109–119.

    Article  CAS  Google Scholar 

  • Gadd, G. M. (2010). Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology, 156(3), 609–643.

    Article  CAS  Google Scholar 

  • Gadd, G. M., & Griffiths, A. J. (1977). Microorganisms and heavy metal toxicity. Microbial Ecology, 4(4), 303–317.

    Article  CAS  Google Scholar 

  • Garza-Gonzalez, M. T., Perez, D. B., Rodriguez, A. V., Garcia-Gutierrez, D. I., Zarate, X., Cardenas, M. E. C., … & Medina-Ruiz, P. (2016). Correction: Metal-induced production of a novel bioadsorbent exopolysaccharide in a native Rhodotorula mucilaginosa from the Mexican northeastern region. PloS one, 11(2). doi: 10.1371/journal.pone.0150522

  • Ghosh, S. K., Ghosh, S., Gachhui, R., & Mandal, A. (2006). Mercury and organomercurial resistance in Rhodotorula rubra: activation of glutathione reductase. Bulletin of Environmental Contamination and Toxicology, 77(3), 351–358.

    Article  CAS  Google Scholar 

  • Haferburg, G., & Kothe, E. (2007). Microbes and metals: interactions in the environment. Journal of Basic Microbiology, 47(6), 453–467.

    Article  CAS  Google Scholar 

  • Hagler, A. N., & Mendonça-Hagler, L. C. (1981). Yeasts from marine and estuarine waters with different levels of pollution in the state of Rio de Janeiro, Brazil. Applied and Environmental Microbiology, 41(1), 173–178.

    CAS  Google Scholar 

  • Harrison, J. J., Ceri, H., Stremick, C., & Turner, R. J. (2004). Differences in biofilm and planktonic cell mediated reduction of metalloid oxyanions. FEMS Microbiology Letters, 235(2), 357–362.

    Article  CAS  Google Scholar 

  • Harrison, J. J., Ceri, H., Roper, N. J., Badry, E. A., Sproule, K. M., & Turner, R. J. (2005). Persister cells mediate tolerance to metal oxyanions in Escherichia coli. Microbiology, 151(10), 3181–3195.

    Article  CAS  Google Scholar 

  • Harrison, J. J., Rabiei, M., Turner, R. J., Badry, E. A., Sproule, K. M., & Ceri, H. (2006). Metal resistance in Candida biofilms. FEMS Microbiology Ecology, 55(3), 479–491.

    Article  CAS  Google Scholar 

  • Harrison, J. J., Ceri, H., & Turner, R. J. (2007). Multimetal resistance and tolerance in microbial biofilms. Nature Reviews Microbiology, 5(12), 928–938.

    Article  CAS  Google Scholar 

  • Kronvall, G., & Myhre, E. (1977). Differential staining of bacteria in clinical specimens using acridine orange buffered at low pH. Acta Pathologica Microbiologica Scandinavica Section B Microbiology, 85(4), 249–254.

    CAS  Google Scholar 

  • Li, Z., & Yuan, H. (2006). Characterization of cadmium removal by Rhodotorula sp. Y11. Applied Microbiology and Biotechnology, 73(2), 458–463.

    Article  CAS  Google Scholar 

  • Malik, A. (2004). Metal bioremediation through growing cells. Environment International, 30(2), 261–278.

    Article  CAS  Google Scholar 

  • Muneer, B., Shakoori, F. R., Rehman, A., & Shakoori, A. R. (2007). Chromium resistant yeast with multimetal resistance isolated from industrial effluents and their possible use in microbial consortium for bioremediation of wastewater. Pakistan Journal of Zoology, 39(5), 289.

    CAS  Google Scholar 

  • Pieper, D. H., & Reineke, W. (2000). Engineering bacteria for bioremediation. Current Opinion in Biotechnology, 11(3), 262–270.

    Article  CAS  Google Scholar 

  • Rajpert, L., Skłodowska, A., & Matlakowska, R. (2013). Biotransformation of copper from Kupferschiefer black shale (Fore-Sudetic Monocline, Poland) by yeast Rhodotorula mucilaginosa LM9. Chemosphere, 91(9), 1257–1265.

    Article  CAS  Google Scholar 

  • Sternberg, C., Bjarnsholt, T., & Shirtliff, M. (2014). Methods for dynamic investigation of surface-attached in vitro bacterial and fungal biofilms. Microbial Biofilms: Methods and Protocols, 1147, 3–22.

  • Teitzel, G. M., & Parsek, M. R. (2003). Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Applied and Environmental Microbiology, 69(4), 2313–2320.

    Article  CAS  Google Scholar 

  • Volesky, B. Sorption and biosorption. (ISBN 0-9732983-0-8) BV-Sorbex, Inc. St. Lambert (Montreal), Quebec, Canada. 2003.

Download references

Acknowledgements

This investigation was supported by the project number III41010 Ministry of Education, Science and Technological Development of the Republic of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Grujić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grujić, S., Vasić, S., Radojević, I. et al. Comparison of the Rhodotorula mucilaginosa Biofilm and Planktonic Culture on Heavy Metal Susceptibility and Removal Potential. Water Air Soil Pollut 228, 73 (2017). https://doi.org/10.1007/s11270-017-3259-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3259-y

Keywords

Navigation