Skip to main content

Advertisement

Log in

Production of Energy and Biofertilizer from Cattle Wastewater in Farms with Intensive Cattle Breeding

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study evaluates the treatment efficacy and biogas yield of an integrated system composed of a plug-flow biodigester (with sludge recirculation) followed by polishing in a stabilization pond. The system was operated in real scale for 12 months at ambient temperature and under continuous flow. The volumetric yields of biogas varied according to the organic loads applied, between 114 and 294 Kg COD day−1, reaching levels of 0.026 to 0.173 m3 m−3 day−1, with concentrations of CH4 between 56 and 70%. The monthly biogas productions were between 378.5 and 2186.1 m3 month−1 equal to an energy potential of approximately 2070 to 19,168 KWh month−1.The average yearly removals of BOD5,20 and COD by the integrated treatment system were 70 and 86%, respectively. The average annual removals of NH4 and TKN were 88.5 and 85.5%, respectively. The pH values were always near neutral, and the alkalinity was in ranges propitious for anaerobic digestion. The results of this study indicate good efficacy in terms of removal of organic matter and nitrogen compounds, with the added benefits of generation of energy and use of the treated effluent as biofertilizer, enabling significant cost reductions to cattle farmers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agostini, A., Battini, F., Giuntoli, J., Tabaglio, V., Padella, M., Baxter, D., Marelli, L., & Amaducci, S. (2015). Environmentally sustainable biogas? The key role of manure co-digestion with energy crops. Energies, 8, 5234–5265.

    Article  CAS  Google Scholar 

  • APHA (2012). American Public Health Association; American Waterworks Association - AWWA; Water Environment Federation - WEF. Standard Methods for the Examination of Water and Waste Water. 22.ed. Washington.

  • Blanco, M. F. J., Zenatti, D. C., Feiden, A., Weber, R., Tiez, C. M., & Giacobbo, G. (2014). Produção de biogás a partir de dejetos da bovinocultura de leite e cama de aviário. Acta Iguazu, Cascavel, 3(1), 14–27.

    Google Scholar 

  • Brazil. Ministry of Science, Technology and Innovation - MSTI. (2016). Third national communication of brazil to the united nations framework convention on climate change. In: <sirene.mcti.gov.br/publicacoes>. Accessed: 12/12/2016.

  • Castano, J. M., Martin, J. F., & Ciotola, R. (2014). Performance of a small-scale, variable temperature fixed dome digester in a temperate climate. Energies, 7, 5701–5716.

    Article  CAS  Google Scholar 

  • Cavicchioli, A. Q., Scatamburlo, T. M., Yamazi, F. A., Pieri, F. A., & Nero, L. A. (2015). Occurrence of Salmonella, Listeria monocytogenes, and enterotoxigenic Staphylococcus in goat milk from small and medium-sized farms located in Minas Gerais State, Brazil. J. Dairy Sci, 98(12), 8386–8390.

    Article  CAS  Google Scholar 

  • Cestonaro, T., Costa, M. S. S. de M., Costa, L. A. de M., Rozatti, M. A. T., Lorin, H. E. F, Carneiro, L. J. (2015). The anaerobic co-digestion of sheep bedding and P ≥ 50% cattle manure. Waste Management, 46, 612-618

  • Cheng, J., & Liu, B. (2002). Swine wastewater treatment in anaerobic digesters with floating medium. Transactions of ASAE, 45, 799–805. doi:10.13031/2013.8842

  • Cheng, S., Liz, M. H. P., & Huba, E. M. (2013). A review of prefabricated biogas digesters in China. Renew Sustain Energy Rev, 28, 738–48.

    Article  Google Scholar 

  • Chernicharo, C. A. L. (2010). Princípios do tratamento biológico de águas residuárias: Reatores anaeróbios (2° Edth ed.). Belo Horizonte: DESA/UFMG.

    Google Scholar 

  • Coldebella, A., Souza, S.N.M., Souza, J., Koheler. A.C. (2006). Viabilidade da co-geração de energia elétrica com biogás da bovinocultura de leite. Congresso Internacional sobre Geração Distribuída de Energia no Meio Rural, AGRENER GD. In: http://www.proceedings.scielo.br/pdf/agrener/n6v2/123.pdf

  • Dareioti, M. A., Dokianakis, S. N., Stamatelatou, K., Zafiri, C., & Kornaros, M. (2010). Exploitation of olive mill wastewater and liquid cow manure for biogas production. Waste Manage, 30, 1841–1848.

    Article  CAS  Google Scholar 

  • Demirer, G. N., & Chen, S. (2005). Anaerobic digestion of dairy manure in a hybrid reactor with biogas recirculation. World J. Microbiol. Biotechnol, 21, 1509–1514.

    Article  Google Scholar 

  • Epstein, E., & Hagen, C. E. (1952). A kinetic study of the absorption of alkali cations by barley roots. Plant Physiology, Bethesda, 27(3), 457–472.

    Article  CAS  Google Scholar 

  • Ferreira, M., Marques, I. P., & Malico, I. (2012). Biogas in Portugal: Status and public policies in a European context. Energy Policy, 43, 267–274.

    Article  Google Scholar 

  • Ferrer, I., Garfí, M., Uggetti, E., Ferrer-Martí, L., Calderon, A., & Velo, E. (2011). Biogas production in low-cost household digesters at the Peruvian Andes. Biomass and Bioenergy, 35, 1668–1674.

    Article  CAS  Google Scholar 

  • Flaherty, E. (2014). Assessing the distribution of social–ecological resilience and risk: Ireland as a case study ofthe uneven impact of famine. Ecol. Complex, 19C, 35–45.

    Article  Google Scholar 

  • Fujino, J., Morita, A., Matsuoka, Y., & Sawayama, S. (2005). Vision for utilization of livestock residue as bioenergy resource in Japan. Biomass & Bioenergy, 29(5), 367–74.

    Article  Google Scholar 

  • Gerbens-Leenes, P. W., Mekonnen, M. M., & Hoekstra, A. Y. (2013). The water footprint of poultry, pork and beef: a comparative study in different countries and production systems. Water Resour. Ind, 1(2), 25–36.

    Article  Google Scholar 

  • Grady, C. P. L. Jr., Lim, H. C. (1980). Biological Waste Treatment. 1st Ed. New York: Marcel Dekker.

  • Güngör-Demirci, G., & Demirer, G. N. (2004). Effect of initial COD concentration, nutrient addition, temperature and microbial acclimation on anaerobic treatability of broiler and cattle manure. Bioresour. Technol, 93, 109–117.

    Article  Google Scholar 

  • Harikishan, S., & Sung, S. (2003). Cattle waste treatment and Class A biosolid production using temperature-phased anaerobic digester. Adv. Environ. Res, 7(3), 701–706.

    Article  CAS  Google Scholar 

  • Hayes, T. D., Jewell, W. J., Dell’Orto, S., Fanfoni, K. J., Leuschner, A. P., Sherman, D. F. (1980). Anaerobic digestion of cattle manure. In D. A. Stafford, B. I. Wheatley, D. E. Hughes (Eds.), Anaerobic Digestion. London: Applied Science Publishers Ltd.

  • Hill, D. T. (1991). Steady-state mesophilic design equations for methane production from livestock wastes. Transactions of the ASAE, 34(5), 2157–2163.

    Article  Google Scholar 

  • Hindrichsen, I. K., Wettstein, H. R., Machmuller, A., Jorg, B., & Kreuzer, M. (2005). Effect of the carbohydrate composition of feed concentratates on methane emission from dairy cows and their slurry. Environ. Monitor. Assess, 107, 329–350.

    Article  CAS  Google Scholar 

  • IMF. (2010). World Economic Outlook (WEO), Rebalancing Growth, World Economic and Financial Surveys. Washington, D.C.: International Monetary Fund.

    Google Scholar 

  • Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., et al. (2013). Three decades of global methane sources and sinks. Nat. Geosci, 6(10), 813–823.

    Article  CAS  Google Scholar 

  • Kothari, R., Pandey, A. K., Kumar, S., Tyagi, V. V., & Tyagi, S. K. (2014). Different aspects of dry anaerobic digestion for bio-energy: an overview. Renew. Sustain. Energy Rev, 39, 174–195.

    CAS  Google Scholar 

  • Lay, J.J., Li, Y.Y., Noike, T., Endo, J., Ishimoto, S. (1997). Analysis of environmental factors affecting methane production from high-solids organic waste. Water Science and Technology, (36), (6-7), 493-500.

  • Lima, M. A., Boeira, R. C., Castro, V. L. S. S., Ligo, M. A., Cabral, O. M. R., Vieira, R. F., & Luiz, A. J. B. (2001). Estimativa das emissões de gases de efeito estufa provenientes de atividades agrícolas no Brasil. In Mudanças climáticas globais e a agropecuária brasileira (pp. 169–189). Jaguariúna: Embrapa Meio Ambiente.

    Google Scholar 

  • Makhijani, A., & Poole, A. (1975). Energy and agriculture in the third world: a report to the energy policy project of the Ford Foundation. Cambridge: Ballinger.

    Google Scholar 

  • Mao, C., Feng, Y., Wang, X., & Ren, G. (2015). Review on research achievements of biogas from anaerobic digestion. Renew Sustain Energy, 45, 540–55.

    Article  CAS  Google Scholar 

  • Marañón, E., Castrillón, L., Vázquez, I., & Sastre, H. (2001). The influence of hydraulic residence time on treatment of cattle manure in UASB reactors. Waste Management & Research, 19, 436–441.

    Article  Google Scholar 

  • Mendes Junior, A. P., & Bueno, O. C. (2015). Participação da energia fóssil na produção dos fertilizantes industriais nitrogenados com ênfase na ureia. Energia na Agricultura, 30(4), 442–447.

    Article  Google Scholar 

  • Mendonça, H. V. M., Ribeiro, C. B. M., Borges, A. C., & Bastos, R. R. (2012). Remoção de nitrogênio e fósforo de águas residuárias de laticínios por sistemas alagados construídos operando em bateladas. Revista Ambient. Água, 7(2), 75–87.

    Article  Google Scholar 

  • Mendonça, H. V., Ribeiro, C. B. M., Borges, A. C., & Bastos, R. R. (2015). Sistemas alagados construídos em bateladas: remoção de demanda bioquímica de oxigênio e regulação de pH no tratamento de efluentes de laticínios. Revista Ambient. Água, 10(2), 442–453.

    Google Scholar 

  • Møller, H. B., Sommer, S. G., & Ahring, B. K. (2004). Methane productivity of manure, straw and solid fractions of manure. Biomass Bioenergy, 26, 485–95.

    Article  Google Scholar 

  • Mouri, G., & Aisaki, N. (2015). Using land-use management policies to reduce the environmental impacts of livestock farming. Ecological Complexity, 22, 169–177.

    Article  Google Scholar 

  • Nicodemo, M. L. F. (2001). Cálculo de misturas minerais para bovinos. Campo Grande: Empresa Brasileira de Pesquisa Agropecuária: Documentos 109.

    Google Scholar 

  • Noorollahi, Y., Kheirrouz, M., Farabi-asl, H., Yousefi, H., & Hajinezhad, A. (2015). Biogas production potential from livestock manure in Iran. Renewable & Sustainable Energy Reviews, 50, 748–754.

    Article  Google Scholar 

  • Noukeu, N. A., Gouado, I., Priso, R. J., Ndongo, D., Taffouo, V. D., Dibong, S. D., & Ekodeck, G. E. (2016). Characterization of effluent from food processing industries and stillage treatment trial with Eichhornia crassipes (Mart.) and Panicum maximum (Jacq.). Water Resources and Industry, 16, 1–18.

    Article  Google Scholar 

  • Orrico Junior, M. A. P., Orrico, A. C. A., & Lucas Junior, J. (2010). Influência da relação volumoso: concentrado e do tempo de retenção hidráulica sob a biodigestão anaeróbia de dejetos de bovino. Engenharia Agrícola, 30, 386–394.

    Google Scholar 

  • Pereira, E. L., Campos, C. M. M., & Monterani, F. (2009). Effects of pH, acidity and alkalinity on the microbiota activity of an anaerobic sludge blanket reactor (UASB) treating pig manure effluents. Revista Ambiente & Água, 4(3), 157–168.

    Article  CAS  Google Scholar 

  • Raheen, A., Hassan, M. Y., & Shakoor, R. (2016). Bioenergy from anaerobic digestion in Pakistan: Potential, development and prospects. Renew Sustain Energy Rev, 59, 264–275.

    Article  Google Scholar 

  • Resende, A. J., Godon, J. J., Bonnafous, A., Arcuri, P. B., Silva, V. L., Otenio, M. H., & Diniz, C. G. (2015). Seasonal Variation on Microbial Community and Methane Production during Anaerobic Digestion of Cattle Manure in Brazil. Microbial Ecology, 70, 01–12.

    Article  Google Scholar 

  • Rico, C., Rico, J. L., Muñoz, N., Gómez, B., & Tejero, I. (2011). Effect of mixing on biogas production during mesophilic anaerobic digestion of screened dairy manure in pilot plant. Eng Life Sci, 11, 476–481.

    Article  CAS  Google Scholar 

  • Saad, N. M., & Massé, D. I. (2015). Impact of organic loading rate on psychrophilic anaerobic digestion of solid dairy manure. Energies, 8, 1990–2007.

    Article  Google Scholar 

  • Salek, S. S., Bozkurt, S. S., van Turnhout, A. G., Kleerebezem, R., & van Loosdrecht, M. C. M. (2016). Kinetics of CaCO3 precipitation in an anaerobic digestion process integrated with silicate minerals. Ecol. Eng, 86, 105–112.

    Article  Google Scholar 

  • Sampaio, M. A., Gonçalves, M. R., & Marques, I. P. (2011). Anaerobic digestion challenge of raw olive mill wastewater. Bioresour. Technol, 102, 10810–10818.

    Article  CAS  Google Scholar 

  • Thomas, O. (1995). « Métrologie des eaux résiduaire ». 1 ed. Cebedoc/Tec. et Doc. 11, Liège -75384. Paris.

  • Tilche, A., De Poli, F., Ercoli, L., Tesini, O. (1984). An improved plug flow design for the anaerobic digestion of dairy cattle waste. In: International Conference of Biogas Technology, Transfer and Diffusion, Cairo, 17-24 November 1984. London: Elsevier

  • United States Environmental Protection Agency – USEPA. (2000). Evaluating ruminant livestock efficiency projects and programs. Washington D.C: Peer Review Draft

  • Usack, J. G., Wiratni, W., & Angenent, L. T. (2014). Improved design of anaerobic digesters for household biogas production in Indonesia: one cow, one digester, and one hour of cooking per day. Sci World J, 2014, 1–8.

    Article  Google Scholar 

  • Von Sperling, M. (2014). Princípios de tratamento biológico de águas residuárias: introdução à qualidade das águas e ao tratamento de esgotos. 4th Ed. Belo Horizonte: DESA/UFMG

  • WHO. (2006). WHO guidelines for the safe use of wastewater, excreta and greywater, in: Excreta and Greywater Use in Agriculture (2nd ed.). Geneva: WHO.

    Google Scholar 

  • Wilkie, A. C. (2005). Anaerobic digestion of diary manure, design and process consideration. National Resource, Agricultural and Engineering Service, 176, 301–312.

    Google Scholar 

  • Wilkie, A. C., Castro, H. F., Cubisnki, K. R., Owens, J. M., & Yan, S. C. (2004). Fixed-film anaerobic digestion of flushed dairy manure after primary treatment: wastewater production and characterization. Biosyst. Eng, 89(4), 457–471.

    Article  Google Scholar 

  • Wirth, B., Reza, T., & Mumme, J. (2015). Influence of digestion temperature and organic loading rate on the continuous anaerobic treatment of process liquor from hydrothermal carbonization of sewage sludge. Bioresour. Technol, 198(12), 215–222.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Brazilian Agricultural Research Corporation (EMBRAPA Dairy), funding agencies: National Counsel of Technological and Scientific Development (CNPq), Foundation for Research Support of the State of Minas Gerais (FAPEMIG) Coordination for the Improvement of Higher Level or Education Personnel(CAPES) for financial support, the InterAmerican Institute for Climate Change Research (CRN3005), and the Foundation for Research Support of the State of Sao Paulo (FAPESP2014/50627-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrique Vieira de Mendonça.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Mendonça, H.V., Ometto, J.P.H.B. & Otenio, M.H. Production of Energy and Biofertilizer from Cattle Wastewater in Farms with Intensive Cattle Breeding. Water Air Soil Pollut 228, 72 (2017). https://doi.org/10.1007/s11270-017-3264-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3264-1

Keywords

Navigation