Skip to main content

Advertisement

Log in

Impact of NaCl Solution Pretreatment on Plant Growth and the Uptake of Multi-heavy Metal by the Model Plant Arabidopsis thaliana

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Cadmium and lead are some of several heavy metals that present a great concern for the environment because even in non-toxic concentrations for plants, their toxicity can affect animals and humans. Three different concentrations of sodium chloride solution were employed as pretreatment agents in order to increase the bioavailability of heavy metals and to analyze the interaction between heavy metals under saline soil conditions. The biomass production presented a remarkable increase for plants grown in soil pretreated with a 0.3 M NaCl solution, whereas the growth curve response of Arabidopsis thaliana in all samples showed a clear alteration compared with the control system. The conclusion was reached that saline solution pretreatment used in soil containing heavy metals produced an apparent stimulation of plant growth. In regards to the uptake of heavy metals by plants, lead and especially cadmium were the most favored metals by NaCl application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Acosta, J. A., Jansen, B., Kalbitz, K., Faz, K., & Martínez–Martínez, S. (2011). Salinity increases mobility of heavy metals in soils. Chemosphere, 85(8), 1318–1324.

    Article  CAS  Google Scholar 

  • Arthur, E. L., Rice, P. J., Rice, P. J., Anderson, T. A., Baladi, S. M., Henderson, K. L. D., & Coats, J. R. (2008). Phytoremediation—an overview. Critical Reviews in Plant Sciences, 24(2), 109–122.

    Article  Google Scholar 

  • ATSDR. Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services (2015) The 2015 Priority List of Hazardous Substances. ATSDR Publications. Available on http://www.atsdr.cdc.gov/spl/ (accessed on March 2016).

  • Belluck, D. A., Benjamin, S. L., & David, S. (2006). Why remediate? In J. L. Morel, G. Echevarria, & N. Gonchavora (Eds.), Phytoremediation of metal-contaminated soils (pp. 1–23). Netherlands: Springer.

    Chapter  Google Scholar 

  • Boyes, D. C., Zayed, A. M., Ascenzi, R., McCaskill, A. J., Hoffman, N. E., Davis, K. R., & Görlach, J. (2001). Growth stage–based phenotypic analysis of Arabidopsis a model for high throughput functional genomics in plants. The Plant Cell, 13, 1499–1510.

    Article  CAS  Google Scholar 

  • Brookins, DG. (1988). Eh–pH Diagrams for Geochemistry. Springer–Verlag.

  • Carbonell–Barrachina, A. A., Burló–Carbonell, F., & Mataix–Beneyto, J. (1997). Arsenic uptake, distribution, and accumulation in bean plants: effect of arsenite and salinity on plant growth and yield. Journal of Plant Nutrition, 20(10), 1419–1430.

    Article  Google Scholar 

  • Cunningham, S. D., & Berti, W. R. (1993). Remediation of contaminated soils with green plants: an overview. Vitro Cellular & Developmental Biology–Plant, 29(4), 207–212.

    Article  Google Scholar 

  • Cunningham, S. D., & Ow, D. W. (1996). Promises and prospects of phytoremediation. Plant Physiology, 110, 715–719.

    Article  CAS  Google Scholar 

  • Cunningham, S. D., Berti, W. R., & Huang, J. W. (1995). Phytoremediation of contaminated soils. Trends in Biotechnology, 13(9), 393–397.

    Article  CAS  Google Scholar 

  • Dar, S. R., Thomas, T., Dagar, J. C., Singh, D., Chauhan, M. K., & Kumar, A. (2011). Phytoavailability of zinc and cadmium as affected by salinity and zinc in wheat (Triticum aestivum L.) grown on cadmium polluted soil. Libyan Agriculture Research Center Journal International, 2(4), 195–199.

    Google Scholar 

  • Das, P., Samantaray, S., & Rout, G. R. (1997). Studies on cadmium toxicity in plants: a review. Environmental Pollution, 98(1), 29–36.

    Article  CAS  Google Scholar 

  • Davis, J.G., Waskom, R.M., Bauder, T.A. (2013). Managing sodic soils, Fact Sheet–Crop Series. Colorado State University Extension Website. http://extension.colostate.edu/docs/pubs/crops/00504.pdf. Accessed 15 January 2015.

  • EEA. (2014). Progress in management of contaminated sites. European Environment Agency (EEA) Website. http://www.eea.europa.eu/data-and-maps/indicators/progress-in-management-of-contaminated-sites/progress-in-management-of-contaminated-1. Accessed 10 November 2014.

  • Förstner, U. (1979). Metal transfer between solid and aqueous phases. In U. Förstner & G. T. Wittmann (Eds.), Metal pollution in the aquatic environment (pp. 197–270). Berlin: Spriger–Verlag.

    Chapter  Google Scholar 

  • Hatje, V., Payne, T. E., Hill, D. M., McOrist, G., Birch, G. F., & Szymczak, R. (2003). Kinetics of trace elements uptake and release by particles in estuarine waters: effects of pH, salinity, and particle loading. Environmental International, 29, 619–629.

    Article  CAS  Google Scholar 

  • Hattori, H., Kuniyasu, K., Chiba, K., & Chino, M. (2006). Effect of chloride application and low soil pH on cadmium uptake from soil by plants. Soil Science and Plant Nutrition, 52(1), 89–94.

    Article  CAS  Google Scholar 

  • Hermann, R., & Neumann–Mahlkau, P. (1985). The mobility of zinc, cadmium, copper, lead, iron and arsenic in ground water as a function of redox potential and pH. The Science of the Total Environment, 43, 1–12.

    Article  CAS  Google Scholar 

  • Huang, J. W., Chen, J., Berti, W. R., & Cunningham, S. D. (1997). Phytoremediation of lead–contaminated soils: role of synthetic chelates in lead phytoextraction. Environmental Science and Technology, 31(3), 800–805.

    Article  CAS  Google Scholar 

  • Husson, O. (2013). Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: a trans disciplinary overview pointing to integrative opportunities for agronomy. Plant and Soil, 362(1), 389–417.

    Article  CAS  Google Scholar 

  • Jørgensen, S. E. (1993). Removal of heavy metals from compost and soil by ecotechnological methods. Ecological Engineering, 2, 89–100.

    Article  Google Scholar 

  • Kabata–Pendias, A. (2011). Trace elements in soils and plants. CRC Press–Taylor & Francis Group, Boca Raton, Florida.

  • Kayser, A., Wenger, K., Keller, A., Attinger, W., Felix, H. R., Gupta, S. K., & Schulin, R. (2000). Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: the use of NTA and sulfur amendments. Environmental Science and Technology, 34(9), 1778–1783.

    Article  CAS  Google Scholar 

  • Keunen, E., Truyens, S., Bruckers, L., Remans, T., Vangronsveld, J., & Cuypers, A. (2011). Survival of Cd-exposed Arabidopsis thaliana are these plants reproductively challenged. Plant Physiology and Biochemistry, 49, 1084–1091.

    Article  CAS  Google Scholar 

  • Khoshgoftar, A. H., Shariatmadari, H., Karimian, N., Kalbasi, M., van der Zee, S. E. A. T. M., & Parker, D. R. (2004). Salinity and zinc application effects in phytoavailability of cadmium and zinc. Soil Science Society of America Journal, 68, 1885–1889.

    Article  CAS  Google Scholar 

  • Khoshgoftarmanesh, A. H., Shariatmadari, H., Karimian, N., Kalbasi, M., & van der Zee, S. E. A. T. M. (2006). Cadmium and zinc in saline solutions and their concentrations in wheat. Soil Science Society of America Journal, 70, 582–589.

    Article  CAS  Google Scholar 

  • Koopmans, G. F., Römkens, P. F. A. M., Fokkema, M. J., Song, J., Luo, Y. M., Japenga, J., & Zhao, F. J. (2008). Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils. Environmental Pollution, 156, 905–914.

    Article  CAS  Google Scholar 

  • Mane, A. V., Saratale, G. D., Karadge, B. A., & Samant, J. S. (2011). Studies on the effects of salinity on growth, polyphenol content and photosynthetic response in Vetiveria zizanioides (L) Nash. Emirates Journal of Food and Agriculture, 23(1), 59–70.

    Google Scholar 

  • Manousaki, E., & Kalogerakis, N. (2009). Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L) metal uptake in relation to salinity. Environmental Science and Pollution Research, 16(7), 844–855.

    Article  CAS  Google Scholar 

  • Manousaki, E., Kadukova, J., Papadantonakis, N., & Kalogerakis, N. (2008). Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils. Environmental Research, 106, 326–332.

    Article  CAS  Google Scholar 

  • McGrath, S. P., Lombi, E., Gray, C. W., Caille, N., Dunham, S. J., & Zhao, F. J. (2006). Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environmental Pollution, 141, 115–125.

    Article  CAS  Google Scholar 

  • McLaughlin, M. J., Palmer, L. T., Tiller, K. G., Beech, T. A., & Smart, M. K. (1994). Increased soil salinity causes elevated cadmium concentrations in field-grown potato tubers. Journal of Environmental Quality, 23(5), 1013–1018.

    Article  CAS  Google Scholar 

  • Moradi, S., Yosefi, R., & Ghaderi, O. (2013). Bioconcentration factor and relative growth rate on Azolla (Azolla caroliniana) in arsenic and salinity stress conditions. International Journal of Agronomy and Plant Production, 4(10), 2617–2623.

    CAS  Google Scholar 

  • Mudgal, V., Madaan, N., & Mudgal, A. (2010). Heavy metals in plants: phytoremediation: plants used to remediate heavy metal pollution. Agriculture and Biology Journal of North America, 1(1), 40–46.

    CAS  Google Scholar 

  • Novo, L. A. B., Covelo, E. F., & González, L. (2014a). Effect of salinity on zinc uptake by Brassica juncea. International Journal of Phytoremediation, 16(7–8), 704–718.

    Article  CAS  Google Scholar 

  • Novo, L. A. B., Manousaki, E., Kalogerakis, N., & González, L. (2014b). The effect of cadmium and salinity on germination and early growth of Brassica juncea (L) var. juncea. Fresenius Environmental Bulletin, 22(12a), 3709–3717.

    Google Scholar 

  • Pedron, F., Petruzzelli, G., Barbafieri, M., & Tassi, E. (2009). Strategies to use phytoextraction in very acidic soil contaminated by heavy metals. Chemosphere, 75, 808–814.

    Article  CAS  Google Scholar 

  • Raskin, I., Nanda, P. B. A. K., Dushenkov, S., & Salt, D. E. (1994). Bioconcentration of heavy metals by plants. Current Opinion in Biotechnology, 5, 285–290.

    Article  CAS  Google Scholar 

  • Salt, D. E., Blaylock, M., Kumar, N. P. B. A., Dushenkov, V., Ensley, B. E., Chet, I., & Raskin, I. (1995). Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology, 13, 468–474.

    Article  CAS  Google Scholar 

  • Sari, I., & Din, Z. B. (2012). Effects of salinity on the uptake of lead and cadmium by two mangrove species Rhizophora apiculata Bl. and Avicennia alba Bl. Chemistry and Ecology, 28(4), 365–374.

    Article  CAS  Google Scholar 

  • Smolders, E., & McLaughlin, M. J. (1996). Effect of Cl on Cd uptake by Swiss chard in nutrient solutions. Plant and Soils, 179, 57–64.

    Article  CAS  Google Scholar 

  • Sommers, L., Lambrechts, R. M., McLaughlin, M. J., & Tiller, K. G. (1987). Effects of soil properties on accumulation of trace elements by crops. In A. L. Page, T. G. Logan, & J. A. Ryan (Eds.), Land application of sludge (pp. 5–23). Chelsea: Lewis Publisher.

    Google Scholar 

  • Sposito, G. (2008). The chemistry of soils. New York: Oxford University Press.

    Google Scholar 

  • Alberta Agriculture and Food (AF) Staff (2008) Nutrient Management: Planning Guide, Module 3: Field and Soil Evaluation. Alberta Agriculture and Food Department, Canada. http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/epw11920/$FILE/nutrient-management-planning-guide.pdf. Accessed 27 July 2015.

  • Takeda, A., Kimura, K., & Yamasaki, S. (2004). Analysis of 57 elements in Japanese soils, with special reference to soil group and agricultural use. Geoderma, 119, 291–307.

    Article  CAS  Google Scholar 

  • Thomas, G. W. (1996). Soil pH and soil acidity. In D. L. Sparks (Ed.), Methods of soil analysis part 3: chemical methods. USA: Soil Science of America.

    Google Scholar 

  • US EPA. (2014). Superfund: National Priorities List (NPL). United States Environmental Protection Agency (US EPA) Webpage. http://www2.epa.gov/superfund/superfund-national-priorities-list-npl. Accessed November 2015.

  • Vazquez, M. D., Lopez, J., & Carballeira, A. (1999). Uptake of heavy metals to the extracellular and intracellular compartments in three species of aquatic bryophyte. Ecotoxicology and Environmental Safety, 44, 12–24.

    Article  CAS  Google Scholar 

  • Wasay, S. A., Barrington, S. F., & Tokunaga, S. (1998). Remediation of soils polluted by heavy metals using salts of organic acids and chelating agents. Environmental Technology, 19(4), 369–379.

    Article  CAS  Google Scholar 

  • Weggler, K., McLaughlin, M. J., & Graham, R. D. (2004). Effect of chloride in soil solution on the plant availability of biosolid–borne cadmium. Journal of Environmental Quality, 33(2), 496–504.

    Article  CAS  Google Scholar 

  • Zhao, F. J., Lombi, E., & McGrath, S. P. (2003). Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant and Soil, 249, 37–43.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Technical Team (C. Maruo and N. Chiba) from the Department of Civil and Environmental Engineering of Tohoku University for its invaluable collaboration during the development of the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Antonio León-Romero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

León-Romero, M.A., Soto-Ríos, P.C., Fujibayashi, M. et al. Impact of NaCl Solution Pretreatment on Plant Growth and the Uptake of Multi-heavy Metal by the Model Plant Arabidopsis thaliana . Water Air Soil Pollut 228, 64 (2017). https://doi.org/10.1007/s11270-017-3241-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3241-8

Keywords

Navigation