Skip to main content

Advertisement

Log in

Effect of temperature on surface characteristics of nitrogen ion implanted biocompatible titanium

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

It has been established that nitrogen implantation can modify metals surface properties such as corrosion, wear, friction, etc. Recent studies have shown that nitrogen implantation into titanium and its alloys leads to the formation of titanium nitride, which has interesting biological, chemical, and mechanical properties. In the present investigation, commercially pure biocompatible titanium implanted by nitrogen. Implantation of ions performed at 80 keV and a dose of 2.1 × 1018 ions/cm2 at four different temperatures of 300, 473, 673 and 873 k. Phase and chemical compositions of modified surfaces after implantation obtained using grazing incidence X-ray diffraction technique (GIXRD) and Fourier transform infrared spectrum (FTIR), respectively. The roughness variations before and after ion implantation were observed by atomic force microscopy (AFM). Electrochemical behavior of the samples was investigated in Ringer solution by using electrochemical impedance spectroscopy and polarization tests. Scanning electron microscopy micrographs was used to evaluate the surface morphology of the samples. Variation of the Young’s modulus and hardness of samples were examined using nano-indentation technique before and after ion implantation. Compared to nano-hardness of unimplanted sample, the maximum nano-hardness value of implanted samples is as high as 14.2 GPa, which is at least eight times larger than hardness of the unimplanted sample. The elastic modulus of unimplanted sample was obtained 106 GPa and the maximum elastic modulus value of implanted samples is as high as 178 GPa. Corrosion test results showed that implantation could increase the corrosion resistance of samples, but by increasing the implantation temperature, the corrosion resistance will decrease.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Rautray TR, Narayanan R, Kwon TY, Kim KH. Surface modification of titanium and titanium alloys by ion implantation. J Biomed Mater Res B Appl Biomater. 2010;93B(2):581–91.

    Article  Google Scholar 

  2. Rautray TR, Narayanan R, Kim KH. Ion implantation of titanium based biomaterials. Prog Mater Sci. 2011;56(8):1137–77.

    Article  Google Scholar 

  3. Torrisi L. Ion implantation and thermal nitridation of biocompatible titanium. Biomed Mater Eng. 1996;6(5):379–88.

    Google Scholar 

  4. Kustas FM, Misra MS, Wei R, Wilbur PJ. High temperature nitrogen implantation of Ti-6Al-4V I: microstructure characterization. Surf Coat Technol. 1992;51(1–3):100–5.

    Article  Google Scholar 

  5. Budzynski P, Youssef AA, Sielanko J. Surface modification of Ti–6Al–4V alloy by nitrogen ion implantation. Wear. 2006;261(11–12):1271–76.

    Article  Google Scholar 

  6. Lee DB, Pohrelyuk I, Yaskiv O, Lee JC. Gas nitriding and subsequent oxidation of Ti-6Al-4V alloys. Nanoscale Res Lett. 2012;7(21):1–5.

    Google Scholar 

  7. Liu YZ, Zu XT, He X, Qiu SY, Cao J, Huang XQ. Improvement of tribological behavior of a Ti–Al–Zr alloy by nitrogen ion implantation. Nucl Instrum Methods Res B. 2006;248(1):42–46.

    Article  Google Scholar 

  8. Ion R, Vasilescu C, Drob P, Vasilescu E, Cimpean A, Drob SI, Gordin DM, Gloriant T. Long-term corrosion performances and cytocompatibility of nitrided Ti and Ti–6Al–4V alloy in severe functional conditions. Mater Corros. 2012;9999(9999):1–12.

    Google Scholar 

  9. Rosca JCM, Vasilescu E, Drob P, Vasilescu C, Drob SI. Corrosion behavior in physiological fluids of surface films formed on titanium alloys. Mater Corros. 2012;63(6):527–33.

    Google Scholar 

  10. Vadiraj A, Kamaraj M, Mudali UK, Kamachi U, Nath AK. Effect of surface modified layers on fretting fatigue damage of biomedical titanium alloys. Mater Sci Technol. 2006;22(9):1119–25.

  11. Zhao J, Garza EG, Lam K, Jones CM. Comparison study of physical vapor-deposited and chemical vapor-deposited titanium nitride thin films using X-ray photoelectron spectroscopy. Appl Surf Sci. 2000;158(3–4):246–51.

    Article  Google Scholar 

  12. Anttila A, Raisanen J, Keinonen J. Diffusion of nitrogen in α-Ti. Appl Phys Lett. 1983;42(6):498–500.

    Article  Google Scholar 

  13. Rauschenbach B. Formation of compounds by high-flux nitrogen ion implantation in titanium. J Mater Sci. 1986;21(2):395–404.

    Article  Google Scholar 

  14. Heide N, Schultze JW. Corrosion stability of TiN prepared by ion implantation and PVD. Nucl Instrum Methods Phys Res B. 1993;80–81:467–71.

    Article  Google Scholar 

  15. Starosvetsky D, Gotman I. Corrosion behavior of titanium nitride coated Ni-Ti shape memory surgical alloy. Biomaterials. 2001;22(13):1853–59.

    Article  Google Scholar 

  16. Huang HH, Hsu CH, Pan SJ, He JL, Chen CC, Lee TL. Corrosion and cell adhesion behavior of TiN-coated and ion-nitrided titanium for dental applications. Appl Surf Sci. 2005;244(1–4):252–56.

    Article  Google Scholar 

  17. Shenhara A, Gotmana I, Radinb S, Ducheyneb P, Gutmanasa EY. Titanium nitride coatings on surgical titanium alloys produced by a powder immersion reaction assisted coating method: residual stresses and fretting behavior. Surf Coat Technol. 2000;126(2–3):210–18.

    Article  Google Scholar 

  18. Kasukabe Y, Ito A, Nagata S, Kishimoto M, Fujino Y, Yamaguchi S, Yamada Y. Epitaxial growth of (001)-oriented titanium nitride thin films by N implantation. J Vac Sci Technol A. 1998;16(2):482–9.

    Article  Google Scholar 

  19. Fukumoto S, Tsubakino H, Terasawa M, Mitamura T, Nakamura K., Okazaki Y. , Corrosion resistance of nitrogen ion implanted titanium alloy for medical implants in physiological saline solution, Conference on Ion Implantation Technology, (2000), 777–80.

  20. Kurtz SR, Gordon RG. Chemical vapor deposition of titanium nitride at low temperatures. Thin Solid Films. 1986;140(2):277–90.

    Article  Google Scholar 

  21. Shieh J, Hon MH. Nanostructure and hardness of titanium aluminum nitride prepared by plasma enhanced chemical vapor deposition. Thin Solid Films. 2001;391(1):101–8.

    Article  Google Scholar 

  22. Satou M, Andoh Y, Ogata K, Suzuki Y, Matsuda K, Fujimoto F. Coating films of titanium nitride prepared by ion and vapor deposition method. Jpn J Appl Phys. 1985;24(2):656–60.

    Article  Google Scholar 

  23. Yazdani A, Soltanieh M, Aghajani H, Rastegari S. A new method for deposition of nano sized titanium nitride on steels. Vacuum. 2011;86(2):131–9.

    Article  Google Scholar 

  24. Weerasinghe VM, Westb DRF, de Damboreneac J. Laser surface nitriding of titanium and a titanium alloy. J Mater Process Tech. 1996;58(1):79–86.

    Article  Google Scholar 

  25. Lal K, Meikap AK, Chattopadhyay SK, Chatterjee SK, Ghosh M, Baba K, Hatada R. Electrical resistivity of titanium nitride thin films prepared by ion beam-assisted deposition. Physica B Condens Matter. 2001;307(1–4):150–7.

    Article  Google Scholar 

  26. Jeyachandran YL, Narayandass SK, Mangalaraj D, Sami Areva, Mielczarski JA. Properties of titanium nitride films prepared by direct current magnetron sputtering. Mater Sci Eng A. 2007;445–446:223–36.

    Article  Google Scholar 

  27. Lausmaa J, Rostlund T, McKellop H. A surface spectroscopic study of nitrogen ion-implanted Ti and Ti-6A1-4V wear against UHMWPE. Surf Interface Anal. 1990;15(5):328–36.

    Article  Google Scholar 

  28. Savaloni H, Modiri F, Hajihosseini H, Shokouhy A. Characteristics of surface nano-structural modifications in nitrogen ion implanted W as a function of temperature. Appl Surf Sci. 2006;252(15):5419–23.

    Article  Google Scholar 

  29. Shokouhy A, Ghoraneviss M, Borghei M, Yari M, Larijani MM, Haji Hosseini SH, Asadpour A. Effect of nitrogen ion implantation on microstructure and improvement of titanium corrosion resistance. J Fusion Energ. 2011;30(2):190–4.

    Article  Google Scholar 

  30. Firouzi-Arani M, Savaloni H, Ghoranneviss M. Dependence of surface nano-structural modifications of Ti implanted by N+ ions on temperature. Appl Surf Sci. 2010;256(14):4502–11.

    Article  Google Scholar 

  31. Liu BX, Zhou X, Li HD. Thermodynamics and growth kinetical consideration of metal-nitride formation by nitrogen implantation. Phys Status Solidi A. 1989;113(1):11–22.

    Article  Google Scholar 

  32. Vigen Karimi M, Sinha SK, Kothari DC, Khanna AK, Tyagi AK. Effect of ion implantation on corrosion resistance and high temperature oxidation resistance of Ti deposited 316 stainless steel. Surf Coat Technol. 2002;158–159:609–14.

    Article  Google Scholar 

  33. Rauschenbach B. Temperature influence during high-fluence nitrogen ion implantation into iron. Nucl Instrum Methods Phys Res B. 1986;15(1–6):756–9.

    Article  Google Scholar 

  34. Xie L, Worzala FJ, Conrad JR, Dodd RA, Sridharan K. Influence of temperature on nitrogen ion implantation of Incoloy alloys 908 and 909. Mater Sci Eng A. 1991;139:179–84.

    Article  Google Scholar 

  35. Goode PD, Baumvol IJR. The influence of ion implantation factors on the surface modification of steels. Nucl Instrum Methods. 1981;189(1):161–8.

    Article  Google Scholar 

  36. Ramous E, Principi G, Giordano L, Lo Russo S, Tosello C. Thermal effect of nitrogen implantation on high carbon steels. Thin Solid Films. 1983;102(2):97–106.

    Article  Google Scholar 

  37. Moncoffre N, Hollinger G, Jaffrezic H, Marest G, Tousset J. Temperature influence during nitrogen implantation into steel. Nucl Instrum Methods Phys Res B. 1985;7–8:177–83.

    Article  Google Scholar 

  38. Lucas S, Terwagne G, Bodart F. Temperature and fluence dependences of nitrogen implantation into aluminum. Nucl Instrum Methods Phys Res B. 1990;50(1–4):401–5.

    Article  Google Scholar 

  39. Knystautas EJ, Singh A, Fiset M, Gujrathi S, Lemay L. Temperature effect on the microhardness of Ti-overlaid 4145 steel implanted with nitrogen. Nucl Instrum Methods Phys Res B. 1987;24–25:554–6.

    Article  Google Scholar 

  40. Bouten PCP, Miedema AR. On the stable compositions in transition metal-nitrogen phase diagrams. J Less Common Met. 1979;65(2):217–28.

    Article  Google Scholar 

  41. Niessen AK, De Boer FR. The enthalpy of formation of solid borides, carbides, nitrides, silicides and phosphides of transition and noble metals. J Less Common Met. 1981;82:75–80.

    Article  Google Scholar 

  42. Wilkes P. Phase stability under irradiation — a review of theory and experiment. J Nucl Mater. 1979;83(1):166–75.

    Article  Google Scholar 

  43. Masakatsu Maeda, Ryozo Oomoto, Masaaki Naka and Toshiya Shibayanagi, "Interfacial reaction between titanium and silicon nitride during solid state diffusion bonding", Trans JWRI. 2001;30(2): 59–65.

  44. Kelly R. Factors determining the compound phases formed by oxygen or nitrogen implantation in metals. J Vac Sci Tech. 1982;21(3):778–89.

    Article  Google Scholar 

  45. Rauschenbach B, Hochmuth K. Synthesis of compounds by high‐fluence nitrogen ion implantation in titanium. Phys Status Solidi A. 1986;94(2):833–7.

    Article  Google Scholar 

  46. Oliver WC, Phar GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7(6):1564–83.

    Article  Google Scholar 

  47. Zhou X, Dong HK, Li HD, Liu BX. Reverse sequence of formation of titanium nitrides by nitrogen implantation. J Appl Phys. 1988;63(10):4942–45.

    Article  Google Scholar 

  48. Zhecheva A, Sha W, Malinov S, Long A. Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods. Surf Coat Technol. 2005;200(7):2192–207.

    Article  Google Scholar 

  49. Mandl S, Gerlach JW, Rauschenbach B. Nitride formation in transition metals during high fluence–high temperature implantation. Surf Coat Technol. 2005;200:584–8.

    Article  Google Scholar 

  50. Kustas FM, Misra MS, Wet R, Wilbur PJ, Knapp JA. High temperature nitrogen implantation of Ti-6AI-4V I: Microstructure characterization. Surf Coat Technol. 1992;51:100–5.

    Article  Google Scholar 

  51. Savaloni H, Khojier K, Torabi S. Influence of N+ ion implantation on the corrosion and nano-structure of Ti samples. Corros Sci. 2010;52:1263–67.

    Article  Google Scholar 

  52. Savaloni H, Motmaen-Dadgar M, Ghoranneviss M, Hantehzadeh MR. Temperature and N+ energy dependence on nano-structural modifications and characteristics of Mo surface. Appl Surf Sci. 2006;253:2915–23.

    Article  Google Scholar 

  53. Firouzi-Arani M, Savaloni H. Surface nanostructural modifications of Ti implanted by N+ ions as a function of energy. Philos Mag. 2011;91(30):3946–60. 21

    Article  Google Scholar 

  54. Hohmuth K, Rauschenbach B. High fluence implantation of nitrogen ions into titanium. Mater Sci Eng. 1985;69:489–99.

    Article  Google Scholar 

  55. Oliver WC, Mc Hargue CJ, Zinkle SJ. Thin film characterization using a mechanical properties microprobe. Thin Solid Films. 1987;153(1–3):185–96.

    Article  Google Scholar 

  56. Shan Z, Sitaraman SK. Elastic–plastic characterization of thin films using nano-indentation technique. Thin Solid Films. 2003;437(1–2):176–81.

    Article  Google Scholar 

  57. Page TF, Hainsworth SV. Using nano-indentation techniques for the characterization of coated systems: a critique. Surf Coat Technol. 1993;61(1–3):201–8.

    Article  Google Scholar 

  58. GilJunga Y, Lawn BR, Martyniuk M, Huang H, Hu XZ. Evaluation of elastic modulus and hardness of thin films by nano-indentation. J Mater Res. 2004;19(10):3076–80.

    Article  Google Scholar 

  59. William D. Nix, Elastic and plastic properties of thin films on substrates: nano-indentation techniques. Mater Sci Eng A. 1997;234–236:37–44.

    Google Scholar 

  60. Bourcier RJ, Follstaedt DM, Dugger MT, Myers SM. Mechanical characterization of several ion-implanted alloys: nano-indentation testing, wear testing and finite element modeling. Nucl Instrum Methods Phys Res B. 1991;59–60(2):905–8.

    Article  Google Scholar 

  61. Grauman JS. Titanium-properties and application for the chemical process industry, Encyclopedia of Chemical Processing and Design. 58. New York, NY: Marcel Dekker, Inc; 1997. pp. 123–46.

    Google Scholar 

  62. Martin KJ, Madan A, Hoffman D, Ji J, Barnett SA. Mechanical properties and thermal stability of TiN/TiB2 nanolayered thin films. J Vacuum Sci Technol A. 2005;23:90–98.

    Article  Google Scholar 

  63. Ma CH, Huang JH, Chen H. Nanohardness of nanocrystalline TiN thin films. Surf Coat Tech. 2006;200:3868–75.

    Article  Google Scholar 

  64. Mante FK, Baran GR, Lucas B. Nano-indentation studies of titanium single crystals. Biomaterials. 1999;20:1051–55.

    Article  Google Scholar 

  65. Shakoori Oskooie M, Sadeghpour Motlagh M, Aghajani H. Surface properties and mechanism of corrosion resistance enhancement in a high temperature nitrogen ion implanted medical grade Ti. Surf Coat Tech. 2016;291:356–64.

    Article  Google Scholar 

  66. Mondal K, Murty BS, Chatterjee UK. Electrochemical behavior of amorphous and nanoquasi-crystalline Zr–Pd and Zr–Pt alloys in different environments. Corros Sci. 2005;47:2619–35.

    Article  Google Scholar 

Download references

Acknowledgements

We wish to express our thanks to Majed Malek for carrying out the implantations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Aghajani.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghajani, H., Motlagh, M.S. Effect of temperature on surface characteristics of nitrogen ion implanted biocompatible titanium. J Mater Sci: Mater Med 28, 29 (2017). https://doi.org/10.1007/s10856-016-5843-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-016-5843-x

Keywords

Navigation