Skip to main content
Log in

Theoretical analysis of a resonant quartz-enhanced photoacoustic spectroscopy sensor

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, we report the first analytical model for quartz-enhanced photoacoustic spectroscopy in combination with an acoustic resonator. A generalized fundamental equation is proposed to model the photoacoustic effect, taking into account the coupling between the tuning fork and the surrounding fluid. The analytical signal-to-noise ratio is derived, yielding a direct physical insight with respect to the system design. Experimental behaviors are very well reproduced, and numerical finite elements methods are implemented to successfully confirm the relevance of our approach. We also provide a detailed explanation of the coupling dynamics between the quartz tuning fork and the acoustically resonant tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.K.N. Patel, Laser photoacoustic spectroscopy helps fight terrorism: high sensitivity detection of chemical Warfare Agent and explosives. Eur. Phys. J. Special Topics 153(1), 1–18 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  2. S.M. Cristescu, S.T. Persijn, S. TE Lintel Hekkert, F.J.M. Harren, Laser-based systems for trace gas detection in life sciences. Appl. Phys. B 92(3), 343–349 (2008)

    Article  ADS  Google Scholar 

  3. A. Miklós, P. Hess, Z. Bozóki, Application of acoustic resonators in photoacoustic trace gas analysis and metrology. Rev. Sci. Instrum. 72(4), 1937 (2001)

    Article  ADS  Google Scholar 

  4. A.A. Kosterev, F.K. Tittel, Chemical sensors based on quantum cascade lasers. IEEE J. Quantum Electron. 38(6), 582–591 (2002)

    Article  ADS  Google Scholar 

  5. L. Dong, A.A. Kosterev, D.M. Thomazy, F.K. Tittel, QEPAS spectrophones: design, optimization, and performance. Appl. Phys. B 100(3), 627–635 (2010)

    Article  ADS  Google Scholar 

  6. H. Yi, K. Liu, S. Sun, W. Zhang, Xiaoming Gao, Theoretical analysis of off beam quartz-enhanced photoacoustic spectroscopy sensor. Optics Commun. 285(24), 5306–5312 (2012)

    Article  ADS  Google Scholar 

  7. H. Yi, W. Chen, A. Vicet, Z. Cao, T-shape microresonator-based quartz enchanced photoacoustic spectroscopy for ambient methane monitoring using 3.38 \(\mu\)m antimonide-distributed feedback laser diode. Appl. Phys. B 116, 423–428 (2014)

    Article  ADS  Google Scholar 

  8. P. Patimisco, G. Scamarcio, F.K. Tittel, V. Spagnolo, Quartz-enhanced photoacoustic spectroscopy: a review. Sensors 14, 6165–6206 (2014)

    Article  Google Scholar 

  9. A.A. Kosterev, J.H. Doty, Resonant optothermoacoustic detection: technique for measuring weak optical absorption by gases and micro-objects. Optics Lett. 35(21), 3571–3573 (2010)

    Article  ADS  Google Scholar 

  10. N. Petra, J. Zweck, S.E. Minkoff, A.A. Kosterev, J.H. Doty III, Modeling and design optimization of a resonant optothermoacoustic trace gas sensor. SIAM J. Appl. Math. 71(1), 309–332 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. N. Petra, J. Zweck, A.A. Kosterev, S.E. Minkoff, D. Thomazy, Theoretical analysis of a quartz-enhanced photoacoustic spectroscopy sensor. Appl. Phys. B 94(4), 673–680 (2009)

    Article  ADS  Google Scholar 

  12. D.V. Serebryakov, I.V. Morozov, A.A. Kosterev, V.S. Letokhov, Laser microphotoacoustic sensor of ammonia traces in the atmosphere. Quantum Electron. 40(2), 167–172 (2010)

    Article  ADS  Google Scholar 

  13. H. Yi, W. Chen, S. Sun, K. Liu, T. Tan, T-shape microresonator-based high sensitivity quartz-enhanced photoacoustic spectroscopy sensor. Optics Express 20(8), 9187–9196 (2012)

    Article  ADS  Google Scholar 

  14. S.L. Firebaugh, F. Roignant, E.A. Terray. Modeling the response of photoacoustic gas sensors. In COMSOL, number 1 (2009)

  15. S.L. Firebaugh, E.A. Terray, L. Dong. Optimization of resonator radial dimensions for quartz enhanced photoacoustic spectroscopy systems. Proc. SPIE 8600, 86001S-1–86001S-12 (2013)

    Article  Google Scholar 

  16. Yingchun Cao, Wei Jin, Hoi Lut Ho, Optimization of spectrophone performance for quartz-enhanced photoacoustic spectroscopy. Sensors Actuators B 174, 24–30 (2012)

    Article  Google Scholar 

  17. U. Willer, M. Köhring, M. Mordmüller, W. Schade, Photoacoustic sensing with micro-tuning forks. Proceedings of SPIE 9482B, 1–11 (2015)

  18. G. Aoust, R. Levy, B. Bourgeteau, O. Le Traon, Viscous damping on flexural mechanical resonators. Sensors Actuators A Phys. 230, 126–135 (2015)

    Article  Google Scholar 

  19. L. Meirovitch. Elements of Vibration Analysis (McGraw-Hill, Singapore, 1986). ISBN 0-07-041342-8

  20. G. Aoust, R. Levy, B. Bourgeteau, O. Le Traon, Acoustic damping on flexural mechanical resonators. Sensors Actuators A Phys. 238, 158–166 (2016)

    Article  Google Scholar 

  21. M.P. Morse, H. Feshbach, Methods of Theoretical Physics (Mc Graw-Hill Book Compagny Inc, New York, 1953)

    MATH  Google Scholar 

  22. R.M. Sillitto, Angular distribution of the acoustic radiation from a tuning fork. Am. J. Phys. 34(8), 639–644 (1966)

    Article  ADS  Google Scholar 

  23. A.A. Kosterev, F.K. Tittel, D.V. Serebryakov, A.L. Malinovsky, I.V. Morozov, Applications of quartz tuning forks in spectroscopic gas sensing. Rev. Sci. Instrum. 76(4), 043105 (2005)

    Article  ADS  Google Scholar 

  24. G. Wysocki, A.A. Kosterev, F.K. Tittel, Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at \(\lambda\) = 2 microns. Appl. Phys. B 85, 301–306 (2006)

    Article  ADS  Google Scholar 

  25. L.S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J. Champion, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, S. Fally, J. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W.J. Lafferty, J. Mandin, S.T. Massie, S.N. Mikhailenko, C.E. Miller, N. Moazzen-ahmadi, O.V. Naumenko, A.V. Nikitin, J. Orphal, V.I. Perevalov, A. Perrin, A. Predoi-cross, C.P. Rinsland, M. Rotger, S.A. Tashkun, J. Tennyson, R.A. Toth, A.C. Vandaele, J. Vander Auwera, The HITRAN, molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer 110(533–572), 2009 (2008)

    Google Scholar 

  26. S. Paquay. Développement d ’ une méthodologie de simulation numérique pour les problèmes vibro-acoustiques couplés intérieurs / extérieurs de grande taille. 2001

  27. s. a. Open Engineering. OOFELIE::Multiphysics (2013)

  28. M.J. Moloney, D.L. Hatten, Acoustic quality factor and energy losses in cylindrical pipes. Am. J. Phys. 69(3), 311 (2001)

    Article  ADS  Google Scholar 

  29. L.D. Landau, E.M. Lifshitz. Fluid Mechanics (Pergamon Press, Oxford, 1959)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Aoust.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aoust, G., Levy, R., Raybaut, M. et al. Theoretical analysis of a resonant quartz-enhanced photoacoustic spectroscopy sensor. Appl. Phys. B 123, 63 (2017). https://doi.org/10.1007/s00340-017-6640-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6640-z

Keywords

Navigation