Skip to main content

Advertisement

Log in

Modified impedance source inverter for power conditioning system

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

Based on classical impedance source inverter concept, this paper presents a modified impedance source inverter controlled by different pulse width modulation control strategies for solar PV/battery-powered applications. A brief topology analysis, generalized discussion and design of impedance network elements are presented. Comparison with the classical impedance source inverter is presented. Using simulation, analytical results are presented that ensure stability. The proposed voltage type inverter has reduced inrush current at startup, less capacitor voltage stress and minimum inductor current ripples. DC link voltage boost, reduced total harmonic distortion of output current and voltage, better voltage gain and wide range of output voltage control can be achieved easily with improved power quality. Experimental set-up of the modified impedance source inverter with Field Programmable Gate Array (FPGA) controller has been constructed to ascertain the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

References

  1. Huang Y, Shen M, Peng F Z and Wang J 2006 Z-source inverter for residential photovoltaic systems. IEEE Trans. Power Electron. 21(6): 1776–1782

    Article  Google Scholar 

  2. Peng F Z 2003 Z-source inverter. IEEE Trans. Ind. Appl. 39(2): 504–510

    Article  Google Scholar 

  3. Hosseinnia H, Nazarpour D and Sabernia S 2013 Simple boost control method optimized with genetic algorithm for Z-source inverter. J. Electr. Power Energy Convers. Syst. 1(1): 32–36

    Google Scholar 

  4. Ellabban O, Mierlo J V and Lataire P 2011 Experimental study of the shoot-through boost control methods for the Z-source inverter. EPE J. 21(2): 18–29

    Article  Google Scholar 

  5. Husodo B Y, Md. Ayob S, Anwari M and Taufik 2013 Simulations of modified simple boost control for Z-source inverter. Int. J. Autom. Power Eng. 2(4): 57–64

    Google Scholar 

  6. Peng F Z, Shen M and Qian Z 2005 Maximum boost control of the Z-source inverter. IEEE Trans. Power Electron. 20(4): 833–838

    Article  Google Scholar 

  7. Shen M, Wang J, Joseph A, Peng F Z, Tolbert L M and Adams D J 2006 Constant boost control of the Z-source inverter to minimize current ripple and voltage stress. IEEE Trans. Ind. Appl. 42(3): 770–778

    Article  Google Scholar 

  8. Tang Y, Xie S, Zhang C and Xu Z 2009 Improved Z-source inverter with reduced Z-source capacitor voltage stress and soft-start capability. IEEE Trans. Power Electron. 24(2): 409–415

    Article  Google Scholar 

  9. Tang Y, Xie S and Zhang C 2011 An improved Z-source inverter. IEEE Trans. Power Electron. 26(12): 3865–3868

    Article  Google Scholar 

  10. Peng F Z, Yuan X, Fang X and Qian Z 2003 Z-source inverter for adjustable speed drives. IEEE Power Electron. Lett. 1(2): 33–35

    Article  Google Scholar 

  11. Ellabban O, Mierlo J V and Lataire P 2009 Comparison between different PWM control methods for different Z-source inverter topologies. In: Proceedings of the 13th European Conference on Power Electronics and Applications, EPE ‘09, pp. 1–11

  12. Shen M, Wang J, Joseph A, Peng F Z, Tolbert L M and Adams D J 2004 Maximum constant boost control of the Z-source inverter. In: Proceedings of the IEEE Conference on Industry Applications, pp. 142–147

  13. Loh P C, Vilathgamuwa M, Lai Y S, Chua G T and Li Y W 2005 Pulse-width modulation of Z-source inverter. IEEE Trans. Power Electron. 20(6): 1346–1355

    Article  Google Scholar 

  14. Holtz J 1992 Pulse-width modulation—a survey. IEEE Trans. Ind. Electron. 39(5): 410–419

    Article  Google Scholar 

  15. Holmes D G 1996 The significance of zero space vector placement for carrier-based PWM schemes. IEEE Trans. Ind. Appl. 32(5): 1122–1129

    Article  Google Scholar 

  16. Thangaprakash S and Krishnan A 2012 A new switching scheme for Z-source inverter to minimize ripples in the Z-source elements. Int. J. Autom. Comput. 9(2): 200–210

    Article  Google Scholar 

  17. Al-Khatat M K 2010 Analysis of Z-source inverter for space vector PWM fed 3-phase induction motor. Eng. Tech. J. 28(17): 5440–5449

    Google Scholar 

  18. Neacsu D O 2001 Space vector modulation—an introduction. In: Proceedings of IECON’01: The 27th Annual Conference of the IEEE Industrial Electronics Society, pp. 1583–1592

  19. Liu J, Hu J and Xu L 2005 A modified space vector PWM for Z-source inverter – modeling and design. In: Proceedings of the IEEE Conference on Electrical Machines and Systems, ICEMS 2005, pp. 1242–1247

    Google Scholar 

  20. Thangaprakash S 2012 Unified MPPT control strategy for Z-source inverter based photovoltaic power conversion systems. J. Power Electron. 12(1): 172–180

    Article  Google Scholar 

  21. Rajakaruna S and Jayawickrama L 2005 Designing impedance network of Z-source inverters. In: Proceedings of the 7th International Conference on Power Engineering, IPEC 2005, vol. 2, pp. 962–967

  22. Rajakaruna S and Jayawickrama L 2010 Steady-state analysis and designing impedance network of Z-source inverters. IEEE Trans. Ind. Electron. 57(7): 2483–2490

    Article  Google Scholar 

  23. Shen M, Wang J, Joseph A, Peng F Z and Adams D J 2007 Comparison of traditional inverters and Z-source inverter for fuel cell vehicles. IEEE Trans. Power Electron. 22(4): 1453–1463

    Article  Google Scholar 

  24. Pham C T, Shen A, Dzung P Q, Anh N B and Phu N X 2012 A comparison of control methods for Z-source inverter. Energy Power Eng. 4(4): 187–195

    Article  Google Scholar 

  25. Rostami H and Khaburi D A 2009 Voltage gain comparison of different control methods of the Z-source inverter. In: Proceedings of the International Conference on Electrical and Electronics Engineering, ELECO 2009, pp. I-268–I-272

  26. Thangaprakash S and Krishnan A 2010 Comparative evaluation of modified pulse width modulation schemes of Z-source inverter for various applications and demands. Int. J. Eng. Sci. Technol. 2(1): 103– 115

    Article  Google Scholar 

  27. Tang Y, Xie S and Ding J 2013 Pulse width modulation of Z-source inverters with minimum inductor current ripple. IEEE Trans. Ind. Electron. 61(1): 98–106

    Article  Google Scholar 

  28. Siwakoti Y P, Peng F Z, Blaabjerg F, Loh P C Town G E and Yang S 2015 Impedance-source networks for electric power conversion part ii: review of control and modulation techniques. IEEE Trans. Power Electron. 30(4): 1887–1906

    Article  Google Scholar 

  29. Tang Y and Xie S 2014 System design of series Z-source inverter with feed forward and space vector pulse-width modulation control strategy. IET Power Electron. 7(3): 736–744

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Suganthi.

List of symbols

List of symbols

B :

boost factor

V C :

capacitor voltage

V PN :

DC link voltage

V P :

peak output voltage per phase

D sh :

shoot-through duty ratio

V dc :

input DC voltage

M :

modulation index

G :

voltage gain

V S :

voltage stress

T s :

time period for one switching cycle

T sh :

shoot-through time period

T 1, T 2 :

time interval for active states

T 0 :

time interval for null states

P :

power of PV panel

V :

voltage of PV panel

I l :

average inductor current

V c :

capacitor voltage ripple at peak power

I l :

inductor current ripple at peak power

f s :

switching frequency

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suganthi, J., Rajaram, M. Modified impedance source inverter for power conditioning system. Sādhanā 42, 353–364 (2017). https://doi.org/10.1007/s12046-017-0608-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12046-017-0608-x

Keywords

Navigation