Skip to main content
Log in

Taxicab Correspondence Analysis

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

Taxicab correspondence analysis is based on the taxicab singular value decomposition of a contingency table, and it shares some similar properties with correspondence analysis. It is more robust than the ordinary correspondence analysis, because it gives uniform weights to all the points. The visual map constructed by taxicab correspondence analysis has a larger sweep and clearer perspective than the map obtained by correspondence analysis. Two examples are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1 Anderberg, M.R. (1973). Cluster analysis for applications. New York: Academic Press.

    Google Scholar 

  2. 2 Anderson, E. (1935). The irises of the Gaspé peninsula. Bulletin of the American Iris Society, 59, 2–5.

    Google Scholar 

  3. 3 Arabie, P., & Hubert, L.J. (1992). Combinatorial data analysis. Annual Review of Psychology, 43, 169–203.

    Article  Google Scholar 

  4. 4 Arabie, P., & Hubert, L.J. (1996). An overview of combinatorial data analysis. In P. Arabie, L.J. Hubert, & G. De Soete (Eds.), Clustering and classification (pp. 5–63). River Edge, NJ: World Scientific.

    Chapter  Google Scholar 

  5. 5 Blashfield, R.K., & Aldenferer, M.S. (1988). The methods and problems of cluster analysis. In J.R. Nesselroade & R.B. Cattell (Eds.), Handbook of multivariate experimental psychology (2nd ed., pp. 447–473). New York: Plenum.

    Chapter  Google Scholar 

  6. 6 Brusco, M.J. (2002). A branch-and-bound algorithm for fitting anti-Robinson structures to symmetric dissimilarity matrices. Psychometrika, 67, 459–471.

    Article  Google Scholar 

  7. 7 Brusco, M.J. (2003). An enhanced branch-and-bound algorithm for a partitioning problem. British Journal of Mathematical and Statistical Psychology, 56, 83–92.

    Article  Google Scholar 

  8. 8 Brusco, M.J., & Stahl, S. (2005). Branch-and-bound applications in combinatorial data analysis. New York: Springer-Verlag.

    Google Scholar 

  9. 9 Clapham, C. (1996). The concise Oxford dictionary of mathematics. (2nd ed.). Oxford, UK: Oxford University Press.

    Google Scholar 

  10. 10 Day, W.H.E. (1996). Complexity theory: An introduction for practitioners of classification. In P. Arabie, L.J. Hubert, & G. De Soete (Eds.), Clustering and classification (pp. 199–233). River Edge, NJ: World Scientific.

    Chapter  Google Scholar 

  11. 11 DeCani, J.S. (1972). A branch and bound algorithm for maximum likelihood paired comparison ranking by linear programming. Biometrika, 59, 131–135.

    Article  Google Scholar 

  12. 12 Defays, D. (1978). A short note on a method of seriation. British Journal of Mathematical and Statistical Psychology, 31, 49–53.

    Article  Google Scholar 

  13. 13 Diehr, G. (1985). Evaluation of a branch and bound algorithm for clustering. SIAM Journal for Scientific and Statistical Computing, 6, 268–284.

    Article  Google Scholar 

  14. 14 Du Merle, O., Hansen, P., Jaumard, B., & Mladenović, N. (2000). An interior point algorithm for minimum sum-of-squares clustering. SIAM Journal on Scientific Computing, 21, 1485–1505.

    Article  Google Scholar 

  15. 15 Edwards, A.W.F., & Cavalli-Sforza, L.L. (1965). A method for cluster analysis. Biometrics, 21, 362–375.

    Article  Google Scholar 

  16. 16 Fisher, R.A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, 179–188.

    Article  Google Scholar 

  17. 17 Fisher, W.D. (1958). On grouping for maximum heterogeneity. Journal of the American Statistical Association, 53, 789–798.

    Article  Google Scholar 

  18. 18 Flueck, J.A., & Korsh, J.F. (1974). A branch search algorithm for maximum likelihood paired comparison ranking. Biometrika, 61, 621–626.

    Article  Google Scholar 

  19. 19 Forgy, E.W. (1965). Cluster analyses of multivariate data: Efficiency versus interpretability of classifications. Biometrics, 21, 768.

    Google Scholar 

  20. 20 Furnival, G.M., & Wilson, R.W. (1974). Regression by leaps and bounds. Technometrics, 16, 499–512.

    Article  Google Scholar 

  21. 21 Hair, J.F., Anderson, R.E., Tatham, R. L., & Black, W. C. (1998). Multivariate data analysis (5th ed.). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  22. 22 Hand, D.J. (1981a). Discrimination and classification. New York: Wiley.

    Google Scholar 

  23. 23 Hand, D.J. (1981b). Branch and bound in statistical data analysis, The Statistician, 30, 1–13.

    Article  Google Scholar 

  24. 24 Hartigan, J.A. (1975). Clustering algorithms. New York: Wiley.

    Google Scholar 

  25. 25 Hartigan, J.A., & Wong, M.A. (1979). Algorithm AS136: A k-means clustering program. Applied Statistics, 28, 100–128.

    Article  Google Scholar 

  26. 26 Hubert, L., Arabie, P., & Meulman, J. (2001). Combinatorial data analysis: Optimization by dynamic programming. Philadelphia: Society for Industrial and Applied Mathematics.

    Book  Google Scholar 

  27. 27 Jensen, R.E. (1969). A dynamic programming algorithm for cluster analysis. Operations Research, 17, 1034–1057.

    Article  Google Scholar 

  28. 28 Klein, G., & Aronson, J.E. (1991). Optimal clustering: A model and method. Naval Research Logistics, 38, 447–461.

    Article  Google Scholar 

  29. 29 Koontz, W.L.G., Narendra, P.M., & Fukunaga, K. (1975). A branch and bound clustering algorithm. IEEE Transaction on Computers, C-24, 908–915.

    Article  Google Scholar 

  30. 30 Luce, R.D., & Krumhansl, C. (1988). Measurement, scaling, and psychophysics. In R.C. Atkinson, R.J. Hernnstein, G. Lindzey, & R.D. Luce (Eds.), Stevens' handbook of experimental psychology (pp. 3–74). New York: Wiley.

    Google Scholar 

  31. 31 MacQueen, J.B. (1967). Some methods for classification and analysis of multivariate observations. In L.M. Le Cam & J. Neyman (Eds.), Proceedings of the fifth Berkeley symposium on mathematical statistics and probability (Vol. 1, pp. 281–297), Berkeley, CA: University of California Press.

    Google Scholar 

  32. 32 Miller, K.F. (1987). Geometric methods in developmental research. In J. Bisanz, C.J. Brainerd, & R. Kail (Eds.), Formal methods in developmental psychology (pp. 216–262). New York: Springer-Verlag.

    Chapter  Google Scholar 

  33. 33 Milligan, G.W. (1980). An examination of the effect of six types of error perturbation on fifteen clustering algorithms. Psychometrika, 45, 325–342.

    Article  Google Scholar 

  34. 34 Murtaugh, F. (Ed.) (2003). Classification literature automated search service (Vol. 23–31 1994–2002). Chicago: Classification Society of North America.

    Google Scholar 

  35. 35 Narendra, P.M., & Fukunaga, K. (1977). A branch and bound algorithm for feature subset selection. IEEE Transactions on Computers C-,. 26, 917–922.

    Article  Google Scholar 

  36. 36 Palubeckis, G. (1997). A branch-and-bound approach using polyhedral results for a clustering problem. INFORMS Journal on Computing, 9, 30–42.

    Article  Google Scholar 

  37. 37 Rao, M.R. (1971). Cluster analysis and mathematical programming. Journal of the American Statistical Association, 66, 622–626.

    Article  Google Scholar 

  38. 38 Späth, H. (1980). Cluster analysis algorithms for data reduction and classification of objects. New York: Wiley.

    Google Scholar 

  39. 39 Steinley, D. (2003). Local optima in K-means clustering: What you don't know may hurt you. Psychological Methods, 8, 294–304.

    Article  Google Scholar 

  40. 40 Van Os, B.J., & Meulman, J.J. (2004). Improving dynamic programming strategies for partitioning. Journal of Classification, 21, 207–230.

    Article  Google Scholar 

  41. 41 Ward, J.H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236–244.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Choulakian.

Additional information

This research was financed by the Natural Sciences and Engineering Research Council of Canada. The author thanks Serge Vienneau for his help regarding the graphical displays, and also thanks the editor, associate editor, and two reviewers for their constructive comments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choulakian, V. Taxicab Correspondence Analysis. Psychometrika 71, 333–345 (2006). https://doi.org/10.1007/s11336-004-1231-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-004-1231-4

Keywords

Navigation