Skip to main content
Log in

Loss of Information in Estimating Item Parameters in Incomplete Designs

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

In this paper, the efficiency of conditional maximum likelihood (CML) and marginal maximum likelihood (MML) estimation of the item parameters of the Rasch model in incomplete designs is investigated. The use of the concept of F-information (Eggen, 2000) is generalized to incomplete testing designs. The scaled determinant of the F-information matrix is used as a scalar measure of information contained in a set of item parameters. In this paper, the relation between the normalization of the Rasch model and this determinant is clarified. It is shown that comparing estimation methods with the defined information efficiency is independent of the chosen normalization. The generalization of the method to other models than the Rasch model is discussed.

In examples, information comparisons are conducted. It is found that for both CML and MML some information is lost in all incomplete designs compared to complete designs. A general result is that with increasing test booklet length the efficiency of an incomplete design, compared to a complete design, is increasing, as is the efficiency of CML compared to MML. The main difference between CML and MML is seen in the effect of the length of the test booklet. It will be demonstrated that with very small booklets, there is a substantial loss in information (about 35%) with CML estimation, while this loss is only about 10% in MML estimation. However, with increasing test length, the differences between CML and MML quickly disappear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • 1 Andrich, D. (1978). Relationships between the Thurstone and Rasch approaches to item scaling. Applied Psychological Measurement 2, 451–462.

    Article  Google Scholar 

  • 2 Andrich, D. (1988). The application of an unfolding model of the PIRT type for the measurement of attitude. Applied Psychological Measurement, 12, 33–51.

    Article  Google Scholar 

  • 3 Andrich, D. (1989). A Probabilistic IRT model for unfolding preference data. Applied Psychological Measurement, 13(2), 193–216.

    Article  Google Scholar 

  • 4 Andrich, D., & Luo, G. (1993). A hyperbolic cosine latent trait model for unfolding dichotomous single-stimulus responses. Applied Psychological Measurement, 17, 253-276.

    Article  Google Scholar 

  • 6 Bickel, P.J., & Lehmann, E.L. (1979). Descriptive statistics for nonparametric models IV: Spread. In Jurecková, (Ed.), Contributions to Statistcs, Hájek Memorial Volume, (pp. 33–40). Prague Academia. casellanberger

    Google Scholar 

  • 5 Casella, G., & Berger, R.L., (1990). Statistical Inference, Belmont, CA, Duxbury. InCollectionbickel lehmann

    Google Scholar 

  • 7 Coombs, C.H. (1964). A theory of data, New York, Wiley.

    Google Scholar 

  • 8 Davison, M., (1977). On a metric, unidimensional unfolding model for attitudinal and developmental data. Psychometrika, 42, 523–548.

    Article  Google Scholar 

  • 9 DeSarbo, W.S., & Hoffman, D.L. (1986). Simple and weighted unfolding threshold models for the spatial representation of binary choice data. Applied Psychological Measurement, 10, 247–264.

    Article  Google Scholar 

  • 10 Douglas, J. (1997). Joint consistency of nonparametric item characteristic curve and ability estimates. Psychometrika, 47, 7–28.

    Article  Google Scholar 

  • 11 Formann, A.K. (1988). Latent class models for nonmonotone dichotomous items. Psychometrika, 53, 45–62.

    Article  Google Scholar 

  • 11 Hemker, B.T., Sijtsma, K., Molenaar, I. W., & Junker, B.W. (1997). Stochastic ordering using the latent trait and the sum score in polytomous IRT models. Psychometrika, 62, 331–347.

    Article  Google Scholar 

  • 12 Hoijtink, H.,(1990). A latent trait model for dichotomous choice data. Psychometrika, 55, 641–656.

    Article  Google Scholar 

  • 13 Hoijtink, H. (1991). PARELLA: Measurement of latent traits by proximity items. Leiden, The Netherlands: DSWO Press.

    Google Scholar 

  • 14 Hoijtink, H., & Molenaar, I.W. (1992). Testing for diff in a model with single peaked item characteristic curves: The parella model. Psychometrika, 57, 383–397.

    Article  Google Scholar 

  • 15 Johnson, M.S., (2001). Parametric and non-parametric extensions to unfolding response models.PhD thesis, Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

  • 16 Johnson, M.S. (2004). Nonparametric estimation of item and respondent locations from unfolding-type items. Technical report. Baruch College, Department of Statistics & Computer Information Systems, New York: Available for downloand at stat.baruch.cuny.edu/johnson/NPUF.pdf.

    Google Scholar 

  • 17 Johnson, M.S., & Junker, B.W. (2003). Using data augmentation and Markov chain Monte Carlo for the estimation of unfolding response models. Journal of Educational and Behavioral Statistics, 28(3), 195–230.

    Article  Google Scholar 

  • 18 Junker, B.W. (1991). Essential independence and likelihood-based ability estimation for polytomous items. Psychometrika, 56, 255–278.

    Article  Google Scholar 

  • 19 Junker, B.W. (1993). Conditional association, essential independence and monotone unidimensional item response models. Annals of Statistics, 21, 1359–1378.

    Article  Google Scholar 

  • 20 Junker, B.W., & Sijtsma, K. (2001). Nonparametric item response theory in action: An overview of the special issue. Applied Psychological Measurement, 25, 211–220.

    Article  Google Scholar 

  • 21 Karlin, S. (1968). Total positivity Vol. 1. Stanford, CA: Stanford University Press.

    Google Scholar 

  • 22 Luo, G. (1998). A general formulation for unidimensional latent trait unfolding models: Making explicit the latitude of acceptance. Journal of Mathematical Psychology, 42, 400–417.

    Article  Google Scholar 

  • 23 Maris, E. (1995). Psychometric latent response models. Psychometrika, 60, 523–547.

    Article  Google Scholar 

  • 24 Maris, G., & Maris, E. (2002). Are attitude items monotone or single-peaked? An analysis using Bayesian methods. Technical Report 2002-02, Arnhem: Citgogroep Measurement and Research Department.

    Google Scholar 

  • 25 Masters, G.N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149–174.

    Article  Google Scholar 

  • 26 Mokken, R.J. (1971). A theory and procedure of scale analysis. New York: De Gruyter.

    Book  Google Scholar 

  • 27 Muhlberger, P. (1999).A general unfolding, non-folding scaling model and algorithm. Presented at the 1999 American Political Science Association Annual Meeting, Atlanta, GA.

  • 28 Noël, Y. (1999). Recovering unimodal latent patterns of change by unfolding analysis: Application to smoking cessation. Psychological Methods, 4(2), 173–191.

    Article  Google Scholar 

  • 29 Post, W.J. (1992). Nonparametric unfolding models: a latent structure approach. M&T Series, Leiden, The Netherlands: DSWO Press.

    Google Scholar 

  • 30 Ramsay, J.O. (1991). Kernel smoothing approaches to nonparametric item characteristic curve estimation. Psychometrika, 56, 611–630.

    Article  Google Scholar 

  • Ripley, B.D. (1987). Stochastic simulaton. New York: Wiley.

    Book  Google Scholar 

  • 31 Roberts, J.S., Donoghue, J.R., & Laughlin, J.E. (1999). A general model for unfolding unidimensional polytomous responses using item response theory. Applied Psychological Measurement.

  • 32 Roberts, J.S., Donoghue, J.R., & Laughlin, J.E. (2000). A general item response theory model for unfolding unidimensional polytomous responses. Applied Psychological Measurement, 24, 3–32.

    Article  Google Scholar 

  • 33 Rosenbaum, P. (1987). Comparing item characteristic curves. Psychometrika, 52, 217–233.

    Article  Google Scholar 

  • 34 Sijtsma, K. (1998). Methodology review: nonparametric IRT approaches to the analysis of dichotomous item scores. Applied Psychological Measurement, 22(1), 3–31.

    Article  Google Scholar 

  • 35 Sijtsma, K., & Junker, B.W. (1996). A survey of theory and methods of invariant item ordering, with results for parametric models. British Journal of Mathematical and Statistical Psychology, 49, 79–105.

    Article  Google Scholar 

  • 36 Stout, W.F. (1990). A new item response theory modeling approach with applications to unidimensionality assessment and ability estimation. Psychometrika, 55, 293–325.

    Article  Google Scholar 

  • 37 Thurstone, L.L. (1927). A law of comparative judgment. Psychological Review, 34, 278–286.

    Google Scholar 

  • 38 Thurstone, L.L. (1928). Attitudes can be measured. American Journal of Sociology, 33, 529–554.

    Article  Google Scholar 

  • 39 van Schuur, W.H. (1988). Stochastic unfolding. In W.E. Saris, & I.N. Gallhofer, (Eds.), Sociometric research, volume I: Data collection and scaling(vol. 1,chap. 9, p. 137–157). London: Macmillan.

    Chapter  Google Scholar 

  • 40 Verhelst, N.D., & Verstralen, H.H.F.M. (1993). A stochastic unfolding model derived from the partial credit model, Kwantitative Methoden, 42, 73–92.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theo J. H. M. Eggen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eggen, T.J.H.M., Verhelst, N.D. Loss of Information in Estimating Item Parameters in Incomplete Designs. Psychometrika 71, 303–322 (2006). https://doi.org/10.1007/s11336-004-1205-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-004-1205-6

Keywords

Navigation