Skip to main content
Log in

Acoustojet: acoustic analogue of photonic jet phenomenon based on penetrable 3D particle

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

It has been demonstrated for the first time that an existence of acoustic analogue of photonic jet phenomenon, called acoustojet, providing for subwavelength localization of acoustic field in shadow area of arbitrary 3D penetrable mesoscale particle, is possible. Physical realizations of penetrable particle of arbitrary 3D shape are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abasi, R., Markley, L., Eleftheriades, G.V.: Experimental verification of subwavelength acoustic focusing using a near-field array of closely spaced elements. J. Acoust. Soc. Am. 130(6), 405–409 (2011)

    Article  ADS  Google Scholar 

  • Baresch, D., Thomas, J.-L., Marchiano, R.: Observation of a single-beam gradient force acoustical trap for elastic particles: acoustical tweezers. Phys. Rev. Lett. 116, 024301 (2016)

    Article  ADS  Google Scholar 

  • Born, M., Wolf, E.: Principles of Optics, 808 pp. Cambridge University Press, New York (1999)

    Book  Google Scholar 

  • Briggs, A., Kolosov, O.: Acoustic Microscopy, 357 pp. Oxford University Press, New York (2009)

    Book  Google Scholar 

  • Cebrecos, A., Romero-García, V., Picó, R., et al.: Acoustically penetrable sonic crystals based on fluid-like scatterers. J. Phys. D Appl. Phys. 48(2), 025501 (2014)

    Article  ADS  Google Scholar 

  • Chen, Y.-M., Kim, S.-J.: Scattering of acoustic waves by a penetrable sphere with statistically corrugated surface. J. Acoust. Soc. Am. 42, 1–5 (1967)

    Article  ADS  MATH  Google Scholar 

  • Chen, Z.G., Taflove, A., Backman, V.: Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique. Opt. Express 12, 1214–1220 (2004)

    Article  ADS  Google Scholar 

  • Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 388 pp. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  • Haberman, M.R.: Acoustic metamaterials. Acoust. Today 12(3), 31–39 (2016)

    Google Scholar 

  • Kock, W.E.: Acoustics and optics. Appl. Opt. 8(8), 1525–1531 (1969)

    Article  ADS  Google Scholar 

  • Kress, R.: Acoustic scattering. In: Pike, E.R., Sabatier, P.C. (eds.) Scattering and Inverse Scattering in Pure and Applied Science, pp. 142–161. Academic, London (2001)

    Google Scholar 

  • Lan, L., Jiang, W., Ma, Y.: Three dimensional subwavelength focus by a near-field plate lens. Appl. Phys. Lett. 102, 231119 (2013)

    Article  ADS  Google Scholar 

  • Laurel, A., Mercier, J.-F.J.: Propagation of guided waves through weak penetrable scatterers. Acoust. Soc. Am. 131, 1874–1889 (2012)

    Article  ADS  Google Scholar 

  • Lemoult, F., Fink, M., Lerosey, G.: Acoustic resonators for far-field control of sound on a subwavelength scale. Phys. Rev. Lett. 107(6), 064301 (2011). doi:10.1103/PhysRevLett.107.064301

    Article  ADS  Google Scholar 

  • Lemoult, F., Kaina, N., Fink, M., Lerosey, G.: Wave propagation control at the deep subwavelength scale in metamaterials. Nat. Phys. 9, 55–60 (2013)

    Article  Google Scholar 

  • Lopes, J.H., Leão-Neto, J.P., Minin, I.V., Minin, O.V., Silva, G. T.: A theoretical analysis of acoustic jets. In: Proceedings of the 22nd International Congress on Acoustics, Buenos Aires, Argentina, September 5–9, 2016. Paper ICA2016-943

  • Luk’yanchuk, B., Zheng, Y.W., Lu, Y. F.: Laser cleaning of solid surface: optical resonance and near-field effects. In: Proc. SPIE, vol. 4065, pp. 576–587 (2000)

  • Maurel, A., Mercier, J.-F., Felix, S.: Wave propagation through penetrable scatterers in a waveguide and through a penetrable grating. J. Acoust. Soc. Am. 135, 165–174 (2014)

    Article  ADS  Google Scholar 

  • Minin, I.V., Minin, O.V. (eds.): Ultrasound Imaging—Medical Applications. InTech, Chroatia (2011). doi:10.5772/689

    Google Scholar 

  • Minin, I.V., Minin, O.V.: Photonics of isolated dielectric particles of arbitrary 3D shape—a new direction of optical information technologies. Vestnik NSU 12, 59–70 (2014)

    Google Scholar 

  • Minin, I.V., Minin, O.V.: Acoustojet: acoustic analogue of photonic jet phenomenon. arXiv:1604.08146 (2016)

  • Neisius, A., Smith, N.B., Sankin, G., Kuntz, N.J., Madden, J.F., Fovargue, D.E., Mitran, S., Lipkin, M.E., Simmons, W.N., Preminger, G.M., Zhong, P.: Improving the lens design and performance of a contemporary electromagnetic shock wave lithotripter. Proc. Natl. Acad. Sci. USA 111(13), E1167–E1175 (2014)

    Article  ADS  Google Scholar 

  • Nicolas, L., Furstoss, M., Galland, M.A.: Analogy electromagnetism-acoustics: validation and application to local impedance active control for sound absorption. Eur. Phys. J. Appl. Phys. 4, 95–100 (1998)

    Article  ADS  Google Scholar 

  • Park, C.M., Kim, C.H., Park, H.T., Lee, S.H.: Acoustic gradient-index lens using orifice-type metamaterial unit cells. Appl. Phys. Lett. 108, 124101 (2016)

    Article  ADS  Google Scholar 

  • Randall, R.H.: An Introduction to Acoustic, 340 pp. Dover Publisher, New York (1951)

    Google Scholar 

  • Thomas, C., Gee, K.L., Turley, R.S.: A balloon lens: acoustic scattering from a penetrable sphere. Am. J. Phys. 77, 197–203 (2009)

    Article  ADS  Google Scholar 

  • Torrent, D., Sánchez-Dehesa, J.: Effective parameters of clusters of cylinders embedded in a nonviscous fluid or gas. Phys. Rev. B 74, 224305 (2006)

    Article  ADS  Google Scholar 

  • Turner, E., Kraube,  I., Wilson. J.: Biosensors Fundamentals and Applications, 770 pp.   Oxford University Press (1989)

  • Yang, X., Cai, X., Maslov, K., Wang, L., Luo, Q.: High-resolution photoacoustic microscope for rat brain imaging in vivo. Chin. Opt. Lett. 08(06), 609–611 (2010)

    Article  Google Scholar 

  • Zakutailov, K.V., Levin, M.V., Petronuk, U.S.: High resolution ultrasound methods: microstructure visualization and diagnostics of modern material elastic properties (review). Factory Lab. 75(8), 28–34 (2009)

    Google Scholar 

  • Zhao, J., Li, J., Chen, B., Qiu, Z., Wei, C.: Manipulating acoustic wavefront by inhomogeneous impedance and steerable extraordinary reflection. Sci. Rep. (2013). doi:10.1038/srep02537

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor V. Minin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minin, O.V., Minin, I.V. Acoustojet: acoustic analogue of photonic jet phenomenon based on penetrable 3D particle. Opt Quant Electron 49, 54 (2017). https://doi.org/10.1007/s11082-017-0893-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-0893-y

Keywords

Navigation