Skip to main content
Log in

A novel synthetic small molecule YF-452 inhibits tumor growth through antiangiogenesis by suppressing VEGF receptor 2 signaling

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Tumor angiogenesis is characterized by abnormal vessel morphology, endowing tumor with highly hypoxia and unresponsive toward treatment. To date, mounting angiogenic factors have been discovered as therapeutic targets in antiangiogenic drug development. Among them, vascular endothelial growth factor receptor 2 (VEGFR2) inhibitors exerts potent antiangiogenic activity in tumor therapy. Therefore, it may provide a valid strategy for cancer treatment through targeting the tumor angiogenesis via VEGFR2 pathway. In this study, we established a high-profile compounds library and certificated a novel compound named N-(N-pyrrolidylacetyl)-9-(4-bromobenzyl)-1,3,4,9-tetrahydro-β-carboline (YF-452), which remarkably inhibited the migration, invasion and tube-like structure formation of human umbilical vein endothelial cells (HUVECs) with little toxicity invitro. Rat thoracic aorta ring assay indicated that YF-452 significantly blocked the formation of microvascular exvivo. In addition, YF-452 inhibited angiogenesis in chick chorioallantoic membrane (CAM) and mouse corneal micropocket assays. Moreover, YF-452 remarkably suppressed tumor growth in xenografts mice model. Furthermore, investigation of molecular mechanism revealed that YF-452 inhibited VEGF-induced phosphorylation of VEGFR2 kinase and the downstream protein kinases including extracellular signal regulated kinase (ERK), focal adhesion kinase (FAK) and Src. These results indicate that YF-452 inhibits angiogenesis and may be a potential antiangiogenic drug candidate for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abedi, H., and Zachary, I. (1997). Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. J Biol Chem 272, 15442–15451.

    Article  CAS  PubMed  Google Scholar 

  • Avraham, H.K., Lee, T.H., Koh, Y., Kim, T.A., Jiang, S., Sussman, M., Samarel, A.M., and Avraham, S. (2003). Vascular endothelial growth factor regulates focal adhesion assembly in human brain microvascular endothelial cells through activation of the focal adhesion kinase and related adhesion focal tyrosine kinase. J Biol Chem 278, 36661–36668.

    Article  CAS  PubMed  Google Scholar 

  • Berra, E., Milanini, J., Richard, D.E., Le Gall, M., Viñals, F., Gothié, E., Roux, D., Pagès, G., and Pouysségur, J. (2000). Signaling angiogenesis via p42/p44 MAP kinase and hypoxia. Biochem Pharmacol 60, 1171–1178.

    Article  CAS  PubMed  Google Scholar 

  • Boehm, T., Folkman, J., Browder, T., and O’Reilly, M.S. (1997). Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390, 404–407.

    Article  CAS  PubMed  Google Scholar 

  • Capozzi, M., VON Arx, C., DE Divitiis, C., Ottaiano, A., Tatangelo, F., Romano, G.M., Tafuto, S., and Tafuto, S. (2016). Antiangiogenic therapy in pancreatic neuroendocrine tumors. Anticancer Res 36, 5025–5030.

    Article  PubMed  Google Scholar 

  • Carmeliet, P., and Jain, R.K. (2011). Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho, C.H., Lee, C.S., Chang, M., Jang, I.H., Kim, S.J., Hwang, I., Ryu, S.H., Lee, C.O., and Koh, G.Y. (2004). Localization of VEGFR-2 and PLD2 in endothelial caveolae is involved in VEGF-induced phosphorylation of MEK and ERK. Am J Physiol Heart Circ Physiol 286, H1881–H1888.

    Article  CAS  PubMed  Google Scholar 

  • Chung, B.H., Cho, Y.L., Kim, J.D., Jo, H.S., Won, M.H., Lee, H., Ha, K.S., Kwon, Y.G., and Kim, Y.M. (2010). Promotion of direct angiogenesis in vitro and in vivo by Puerariae flos extract via activation of MEK/ERK-, PI3K/Akt/eNOS-, and Src/FAK-dependent pathways. Phytother Res 24, 934–940.

    PubMed  Google Scholar 

  • Dai, F., Chen, Y., Song, Y., Huang, L., Zhai, D., Dong, Y., Lai, L., Zhang, T., Li, D., Pang, X., Liu, M., and Yi, Z. (2012). A natural small molecule harmine inhibits angiogenesis and suppresses tumour growth through activation of p53 in endothelial cells. PLoS ONE 7, e52162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Falco, S. (2014). Antiangiogenesis therapy: an update after the first decade. Korean J Intern Med 29, 1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong, Y., Lu, B., Zhang, X., Zhang, J., Lai, L., Li, D., Wu, Y., Song, Y., Luo, J., Pang, X., Yi, Z., and Liu, M. (2010). Cucurbitacin E, a tetracyclic triterpenes compound from Chinese medicine, inhibits tumor angiogenesis through VEGFR2-mediated Jak2-STAT3 signaling pathway. Carcinogenesis 31, 2097–2104.

    Article  CAS  PubMed  Google Scholar 

  • Dong, Y., Zhang, T., Li, J., Deng, H., Song, Y., Zhai, D., Peng, Y., Lu, X., Liu, M., Zhao, Y., and Yi, Z. (2014). Oridonin inhibits tumor growth and metastasis through anti-angiogenesis by blocking the notch signaling. PLoS ONE 9, e113830.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eliceiri, B.P., Puente, X.S., Hood, J.D., Stupack, D.G., Schlaepfer, D.D., Huang, X.Z., Sheppard, D., and Cheresh, D.A. (2002). Src-mediated coupling of focal adhesion kinase to integrin avß5 in vascular endothelial growth factor signaling. J Cell Biol 157, 149–160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folkman, J. (1971). Tumor angiogenesis: therapeutic implications. N Engl J Med 285, 1182–1186.

    Article  CAS  PubMed  Google Scholar 

  • Fontanella, C., Ongaro, E., Bolzonello, S., Guardascione, M., Fasola, G., and Aprile, G. (2014). Clinical advances in the development of novel VEGFR2 inhibitors. Ann Transl Med 2, 123.

    PubMed  PubMed Central  Google Scholar 

  • Goodwin, A.M. (2007). In vitro assays of angiogenesis for assessment of angiogenic and anti-angiogenic agents. Microvasc Res 74, 172–183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmqvist, K., Cross, M.J., Rolny, C., Hägerkvist, R., Rahimi, N., Matsumoto, T., Claesson-Welsh, L., and Welsh, M. (2004). The adaptor protein Shb binds to tyrosine 1175 in vascular endothelial growth factor (VEGF) receptor-2 and regulates VEGF-dependent cellular migration. J Biol Chem 279, 22267–22275.

    Article  CAS  PubMed  Google Scholar 

  • Huang, B. (2015). Tumor microenvironment: a mechanical force link. Sci China Life Sci 58, 202–204.

    Article  PubMed  Google Scholar 

  • Jain, R.K. (2013). Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J Clin Oncol 31, 2205–2218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayson, G.C., Kerbel, R., Ellis, L.M., and Harris, A.L. (2016). Antiangiogenic therapy in oncology: current status and future directions. Lancet 388, 518–529.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, B.H., and Liu, L.Z. (2008). AKT signaling in regulating angiogenesis. Curr Cancer Drug Targets 8, 19–26.

    Article  CAS  PubMed  Google Scholar 

  • Lai, L., Liu, J., Zhai, D., Lin, Q., He, L., Dong, Y., Zhang, J., Lu, B., Chen, Y., Yi, Z., and Liu, M. (2012). Plumbagin inhibits tumour angiogenesis and tumour growth through the Ras signalling pathway following activation of the VEGF receptor-2. British J Pharmacol 165, 1084–1096.

    Article  Google Scholar 

  • Liu, F., Tan, G., Li, J., Dong, X., Krissansen, G.W., and Sun, X. (2007). Gene transfer of endostatin enhances the efficacy of doxorubicin to suppress human hepatocellular carcinomas in mice. Cancer Sci 98, 1381–1387.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., and Agarwal, S. (2010). Mechanical signals activate vascular endothelial growth factor receptor-2 to upregulate endothelial cell proliferation during inflammation. J Immunol 185, 1215–1221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medici, D., and Olsen, B.R. (2012). Rapamycin inhibits proliferation of hemangioma endothelial cells by reducing HIF-1-dependent expression of VEGF. PLoS ONE 7, e42913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy, D.A., Makonnen, S., Lassoued, W., Feldman, M.D., Carter, C., and Lee, W.M.F. (2006). Inhibition of tumor endothelial ERK activation, angiogenesis, and tumor growth by sorafenib (BAY43-9006). Am J Pathol 169, 1875–1885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy, J.A., and Dvorak, H.F. (2012). Heterogeneity of the tumor vasculature: the need for new tumor blood vessel type-specific targets. Clin Exp Metastasis 29, 657–662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagès, G., Milanini, J., Richard, D.E., Berra, E., Gothi É E., Viñals, F., and PouyssÉGur, J. (2000). Signaling angiogenesis via p42/p44 MAP kinase cascade. Ann New York Acad Sci 902, 187–200.

    Article  Google Scholar 

  • Pang, X., Yi, Z., Zhang, X., Sung, B., Qu, W., Lian, X., Aggarwal, B.B., and Liu, M. (2009). Acetyl-11-keto-ß-boswellic acid inhibits prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. Cancer Res 69, 5893–5900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pentheroudakis, G., Kotoula, V., Kouvatseas, G., Charalambous, E., Dionysopoulos, D., Zagouri, F., Koutras, A., Papazisis, K., Pectasides, D., Samantas, E., Dimopoulos, M.A., Papandreou, C.N., and Fountzilas, G. (2014). Association of VEGF-A splice variant mRNA expression with outcome in bevacizumab-treated patients with metastatic breast cancer. Clin Breast Cancer 14, 330–338.

    Article  CAS  PubMed  Google Scholar 

  • Pober, J.S., and Sessa, W.C. (2007). Evolving functions of endothelial cells in inflammation. Nat Rev Immunol 7, 803–815.

    Article  CAS  PubMed  Google Scholar 

  • Qi, J.H., and Claesson-Welsh, L. (2001). VEGF-induced activation of phosphoinositide 3-kinase is dependent on focal adhesion kinase. Exp Cell Res 263, 173–182.

    Article  CAS  PubMed  Google Scholar 

  • Saraswati, S., and Agrawal, S.S. (2013). Brucine, an indole alkaloid from Strychnos nux-vomica attenuates VEGF-induced angiogenesis via inhibiting VEGFR2 signaling pathway in vitro and in vivo. Cancer Lett 332, 83–93.

    Article  CAS  PubMed  Google Scholar 

  • Schlessinger, J. (2000). New roles for src kinases in control of cell survival and angiogenesis. Cell 100, 293–296.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz, S., George, J., Ben-Shoshan, J., Luboshits, G., Avni, I., Levkovitch-Verbin, H., Ziv, H., Rosner, M., and Barak, A. (2008). Drug modification of angiogenesis in a rat cornea model. Invest Ophthalmol Vis Sci 49, 250.

    Article  PubMed  Google Scholar 

  • Shen, K., Ji, L., Gong, C., Ma, Y., Yang, L., Fan, Y., Hou, M., and Wang, Z. (2012). Notoginsenoside Ft1 promotes angiogenesis via HIF-1a mediated VEGF secretion and the regulation of PI3K/AKT and Raf/MEK/ERK signaling pathways. Biochem Pharmacol 84, 784–792.

    Article  CAS  PubMed  Google Scholar 

  • Sitohy, B., Nagy, J.A., and Dvorak, H.F. (2012). Anti-VEGF/VEGFR therapy for cancer: reassessing the target. Cancer Res 72, 1909–1914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somanath, P.R., Razorenova, O.V., Chen, J., and Byzova, T.V. (2006). Akt1 in endothelial cell and angiogenesis. Cell Cycle 5, 512–518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, Y., Dai, F., Zhai, D., Dong, Y., Zhang, J., Lu, B., Luo, J., Liu, M., and Yi, Z. (2012). Usnic acid inhibits breast tumor angiogenesis and growth by suppressing VEGFR2-mediated AKT and ERK1/2 signaling pathways. Angiogenesis 15, 421–432.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, T., Yamaguchi, S., Chida, K., and Shibuya, M. (2001). A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J 20, 2768–2778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsoi, M., Laguëëlle, M.N., Boyer, A., Paquet, M., Nadeau, M.È., and Boerboom, D. (2013). Anti-VEGFA therapy reduces tumor growth and extends survival in a murine model of ovarian granulosa cell tumor. Transl Oncol 6, 226–IN1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Villanueva, M.T. (2015). Angiogenesis: a sudden rush of blood to the tumour. Nat Rev Cancer 15, 135–135.

    Article  CAS  PubMed  Google Scholar 

  • Wedge, S.R., Ogilvie, D.J., Dukes, M., Kendrew, J., Chester, R., Jackson, J.A., Boffey, S.J., Valentine, P.J., Curwen, J.O., Musgrove, H.L., Graham, G.A., Hughes, G.D., Thomas, A.P., Stokes, E.S., Curry, B., Richmond, G.H., Wadsworth, P.F., Bigley, A.L., and Hennequin, L.F. (2002). ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res 62, 4645–4655.

    CAS  PubMed  Google Scholar 

  • Willmott, L.J., and Monk, B.J. (2009). Cervical cancer therapy: current, future and anti-angiogensis targeted treatment. Expert Rev Anticancer Therapy 9, 895–903.

    Article  CAS  Google Scholar 

  • Xu, D., Wang, T.L., Sun, L.P., and You, Q.D. (2011). Recent progress of small molecular VEGFR inhibitors as anticancer agents. Mini Rev Med Chem 11, 18–31.

    Article  CAS  PubMed  Google Scholar 

  • Yan, X.C., Yang, Z.Y., Chen, Y., Li, N., Wang, L., Dou, G.R., Liu, Y., Duan, J.L., Feng, L., Deng, S.M., Han, H., and Zhang, P. (2015). Endothelial cells-targeted soluble human Delta-like 4 suppresses both physiological and pathological ocular angiogenesis. Sci China Life Sci 58, 425–431.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J.H., Hu, J., Wan, L., and Chen, L.J. (2014). Barbigerone inhibits tumor angiogenesis, growth and metastasis in melanoma. Asian Pac J Cancer Prev 15, 167–174.

    Article  PubMed  Google Scholar 

  • Zachary, I., and Gliki, G. (2001). Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc Res 49, 568–581.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, S., Cao, Z., Tian, H., Shen, G., Ma, Y., Xie, H., Liu, Y., Zhao, C., Deng, S., Yang, Y., Zheng, R., Li, W., Zhang, N., Liu, S., Wang, W., Dai, L., Shi, S., Cheng, L., Pan, Y., Feng, S., Zhao, X., Deng, H., Yang, S., and Wei, Y. (2011). SKLB1002, a novel potent inhibitor of VEGF receptor 2 signaling, inhibits angiogenesis and tumor growth in vivo. Clin Cancer Res 17, 4439–4450.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y.M., Dai, B.L., Zheng, L., Zhan, Y.Z., Zhang, J., Smith, W.W., Wang, X.L., Chen, Y.N., and He, L.C. (2012). A novel angiogenesis inhibitor impairs lovo cell survival via targeting against human VEGFR and its signaling pathway of phosphorylation. Cell Death Dis 3, e406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, X., Su, Y., You, J., Gong, L., Zhang, Z., Wang, M., Zhao, Z., Zhang, Z., Li, X., and Wang, C. (2016). Combining antiangiogenic therapy with neoadjuvant chemotherapy increases treatment efficacy in stage IIIA (N2) non-small cell lung cancer without increasing adverse effects. Oncotarget 7, 62619–62626.

    PubMed  Google Scholar 

  • Zhu, A.X., Finn, R.S., Mulcahy, M., Gurtler, J., Sun, W., Schwartz, J.D., Dalal, R.P., Joshi, A., Hozak, R.R., Xu, Y., Ancukiewicz, M., Jain, R.K., Nugent, F.W., Duda, D.G., and Stuart, K. (2013). A phase II and biomarker study of ramucirumab, a human monoclonal antibody targeting the VEGF receptor-2, as first-line monotherapy in patients with advanced hepatocellular cancer. Clin Cancer Res 19, 6614–6623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Major State Basic Research Development Program of China (2015CB910400), National Natural Science Foundation of China (81272463, 81472788, 81330049, 81673304), and The Science and Technology Commission of Shanghai Municipality (15431902200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yihua Chen or Zhengfang Yi.

Additional information

Contributed equally to the work

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., He, Y., Yang, F. et al. A novel synthetic small molecule YF-452 inhibits tumor growth through antiangiogenesis by suppressing VEGF receptor 2 signaling. Sci. China Life Sci. 60, 202–214 (2017). https://doi.org/10.1007/s11427-016-0369-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-016-0369-6

Keywords

Navigation