Skip to main content
Log in

Absorption modulation of FSS-polymer nanocomposites through incorporation of conductive nanofillers

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The hybrid concept of utilizing frequency selective surface (FSS) and polymer nanocomposite (PNC) for absorption modulation is presented in 8–18 GHz frequency band. The extruded PNCs are fabricated by incorporating different weight% fraction of conductive fillers, namely carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs), in high, low and mixed nano-filler concentration in a polycarbonate matrix. The FSS metallic resonator is patterned over a dielectric substrate which lies on grounded PNCs. It was found that absorption depends on wt% fraction of conductive inclusions in polycarbonate matrix, i.e., variation in conductivity of grounded PNCs due to varying concentration of conductive fillers results in modulation of absorption. Peaks of nearly 100% magnitude of absorption and modulated absorption band are observed at 8.2 GHz, and between 12 and 18 GHz frequency bands, respectively, by varying conductivity of polymer composite. We demonstrate here that the bandwidth and magnitude of absorption can be fixed by the combination of SSRs (for limits of the band) and concentrations in nanofillers (for intensity of absorption).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.F.L. De Volder et al., Carbon nanotubes: present and future commercial applications. Science 339(6119), 535–539 (2013)

    Article  ADS  Google Scholar 

  2. H. Kim et al., Graphene/Polymer Nanocomposites. Macromolecules 43(16), 6515–6530 (2010)

    Article  ADS  Google Scholar 

  3. F. Qin et al., A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J. Appl. Phys 111, 061301 (2012)

    Article  ADS  Google Scholar 

  4. W.K. Chee et al., Nanocomposites of graphene-polymers: a review. RSC Adv. 5, 68014–68051 (2015)

    Article  Google Scholar 

  5. J.R. Pott et al., Graphene-based polymer nanocomposites. Polymer 52(1), 5–25 (2011)

    Article  Google Scholar 

  6. M. Moniruzzaman, K.I. Winey, Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16), 5194–5205 (2009)

    Article  ADS  Google Scholar 

  7. S.C. Tjong, Polymer composites with graphene nanofillers: electrical properties and applications. J. Nanosci. Nanotech. 14(2), 1154–1168 (2014)

    Article  Google Scholar 

  8. J.M. Thomassin et al., Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. R Rep 74(7), 211–232 (2013)

    Article  Google Scholar 

  9. J.M. Thomassin et al., Foams of polycaprolactone/MWNT nanocomposites for efficient EMI reduction. J. Mater. Chem 18, 792–796 (2008)

    Article  Google Scholar 

  10. T. Kuilla et al., Recent advances in graphene based polymer composites. Prog. Polym. Sci 35(11), 1350–1375 (2010)

    Article  Google Scholar 

  11. P. mukhopadhyay, Graphite, graphene, and their polymer nanocomposites (Taylor & Francis, London, 2013)

    Google Scholar 

  12. C.K. Kum et al., Effects of morphology on the electrical and mechanical properties of the polycarbonate/multi-walled CNT composites. Macromol. Res. 14(4), 456–460 (2006)

    Article  Google Scholar 

  13. P.B. Jana, A.K. Mallick, S.K. De, Effects of sample thickness and fiber aspect ratio on EMI shielding effectiveness of carbon fiber filled polychloroprene composites in the X-band frequency range. IEEE Electromagn. Compat. 34(4), 478–481 (1992)

    Article  Google Scholar 

  14. S. Pegel et al., Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts. Polymer 49(4), 974–984 (2008)

    Article  Google Scholar 

  15. J.Y. Yi, G.M. Choi, Percolation behavior of conductor–insulator composites with varying aspect ratio of conductive fiber. J. Electrocerm 3(4), 361–369 (1999)

    Article  Google Scholar 

  16. R.L. Fante, M.T. McCormack, Reflection properties of the Salisbury screen. IEEE Antennas Propag. 36(10), 1443–1454 (1988)

    Article  ADS  Google Scholar 

  17. F. Costa, A. Monorchio, Electromagnetic absorbers based on high-impedance surfaces: from ultra-narrowband to ultra-wideband absorption. Adv. Electromagn. 1(3), 7–12, (2012)

    Article  ADS  Google Scholar 

  18. H. Xu et al., Broadening bandwidth of the composite radar absorption material involving a frequency selective surface. J. Electromagn. Waves Appl. 29, 60–68 (2014)

    Google Scholar 

  19. Y. Sha et al., Experimental investigations of microwave absorber with FSS embedded in carbon fiber composite. Micro. Opt. Tech. Lett. 32(4) 245 (2002)

    Article  Google Scholar 

  20. H. Xu et al., Broad bandwidth of thin composite radar absorbing structures embedded with frequency selective surfaces. Compos. Part-A 80, 111 (2016)

    Article  Google Scholar 

  21. D.-L. Zhao et al., Preparation and microwave absorbing property of microwave absorbers with FSS embedded in multilayer composites. Adv. Mat. Res. 11–12, 501–504 (2006)

    Article  Google Scholar 

  22. J. Zhou et al., Realization of thin and broadband magnetic radar absorption materials with the help of resistor FSS. IEEE Antenna Wirel. Propa. Lett. 14, 24–27, 19 (2014)

    Google Scholar 

  23. D.M. Bigg, The effect of compounding on the conductive properties of EMI shielding compounds. Adv. Polymer Tech. 4(3–4), 255–266 (1984)

    Article  Google Scholar 

  24. Y. Yang et al., Comparative study of EMI shielding properties of carbon nanofiber and multi-walled carbon nanotube filled polymer composites. J. Nanosci. Nanotech. 5(6), 927–931 (2005)

    Article  Google Scholar 

  25. I. Molenberg et al., Convenient and non-destructive electromagnetic characterization technique for composite and multiscale hybrid samples at microwave frequencies. Micro. Opt. Tech. Lett. 56(2), 504–509 (2014)

    Article  Google Scholar 

  26. J.M. Thomassin et al., A convenient route for the dispersion of CNT in polymers: application to the preparation of electromagnetic interference (EMI) absorbers. Polymer 53(1), 169–174 (2012)

    Article  Google Scholar 

  27. Y. Danlée, I. Huynen, C. Bailly, Frequency-selective multilayer electromagnetic bandgap structure combining carbon nanotubes with polymeric or ceramic substrates. Appl. Phys. Lett. 105, 123118 (2014)

    Article  ADS  Google Scholar 

  28. D.D.L. Chung, EMI shielding effectiveness of carbon materials. Carbon 39, 279–285 (2001)

    Article  Google Scholar 

  29. M.H. Al-Saleh et al., EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon 60, 146–156 (2013)

    Article  Google Scholar 

  30. J. Liang et al., EMI shielding of graphene/epoxy composite. Carbon 47, 922–925 (2009)

    Article  Google Scholar 

  31. D.-X. Yan et al., Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. J. Mater. Chem 22, 18772 (2012)

    Article  Google Scholar 

  32. D.R. Smith et al., Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 71, 036617 (2005)

    Article  ADS  Google Scholar 

  33. N. Quiévy et al., Electromagnetic absorption properties of carbon nanotube nanocomposite foam filling honeycomb waveguide structures. IEEE Electromagn. Compat. 54 (1), 43–51 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Communauté Française de Belgique, through the project “Nano4waves” funded by its research program “Actions de Recherche Concertées”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajkumar Jaiswar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaiswar, R., Danlée, Y., Mesfin, H. et al. Absorption modulation of FSS-polymer nanocomposites through incorporation of conductive nanofillers. Appl. Phys. A 123, 164 (2017). https://doi.org/10.1007/s00339-017-0805-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0805-9

Keywords

Navigation