Skip to main content

Advertisement

Log in

Surviving at the edge of a fragmented range: patterns of genetic diversity in isolated populations of the endangered giant Mediterranean limpet (Patella ferruginea)

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The survival of endangered and rare species with slow growth and low dispersal capabilities critically depends on the persistence of populations within marine protected areas (MPAs). The effectiveness of MPAs at maintaining the species evolutionary potential will depend on the occurrence of self-sustaining and viable populations, harboring sufficient levels of genetic diversity. Here, individuals of Patella ferruginea Gmelin, 1791, an endangered and rare limpet endemic to the western Mediterranean, were genotyped using eight microsatellite loci. Genetic information was used to assess the occurrence of (1) self-sustaining and viable populations and (2) fine-scale spatial genetic structure within two MPAs in the north of Sardinia Island. In contrast to the literature-based expectation of two relict and declining populations, levels of genetic diversity were similar to those reported for other marine gastropods. Furthermore, the contemporary effective population size was higher than the average effective size found in populations of other endangered species. Even accounting for uncertainty, such estimates exceeded the critical threshold below which inbreeding and random genetic drift determine the loss of genetic diversity. The two populations showed different spatial genetic patterns, which might reflect the interplay between species life-history traits and topographic and oceanographic features. With regard to the conservation and management of marine resources, these results stress once more the importance of taking into account both the species life-history traits and the habitat features that can limit connectivity at small geographic scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Addison JA, Harte MW (2005) Spawning, copulation and inbreeding coefficients in marine invertebrates. Biol Lett 1:450–453. doi:10.1098/rsbl.2005.0353

    Article  CAS  Google Scholar 

  • Andrello M, Mouillot D, Beuvier J, Albouy C, Thuiller W, Manel S (2013) Low connectivity between Mediterranean marine protected areas: a biophysical modeling approach for the dusky grouper Epinephelus marginatus. PLoS One 8(7):e68564. doi:10.1371/journal.pone.0068564

    Article  CAS  Google Scholar 

  • Arizmendi-Mejía R, Linares C, Garrabou J, Antunes A, Ballesteros E, Cebrian E, Díaz D, Ledoux JB (2015) Combining genetic and demographic data for the conservation of a mediterranean marine habitat-forming species. PLoS One 10(3):e0119585. doi:10.1371/journal.pone.0119585

    Article  Google Scholar 

  • Bell JJ (2008) Connectivity between island Marine Protected Areas and the mainland. Biol Conserv 141(11):2807–2820. doi:10.1016/j.biocon.2008.08.017

    Article  Google Scholar 

  • Blair C, Weigel DE, Balazik M, Keeley ATH, Walker FM, Landguth R, Cushman S, Murphy M, Waits L, Balkenhol N (2012) A simulation-based evaluation of methods for inferring linear barriers to gene flow. Mol Ecol Resour 12:822–833. doi:10.1111/j.1755-0998.2012.03151.x

    Article  Google Scholar 

  • Boudouresque CF, Cadiou G, Le Diréac’h L (2005) Marine protected areas: a tool for coastal areas management. In: Levner E (ed) Strategic management of marine ecosystems. Springer, Dordrecht, pp 29–52

    Chapter  Google Scholar 

  • Burgos-Rubio V, De la Rosa J, Altamirano M, Espinosa F (2015) The role of Patellid limpets as omnivorous grazers: a new insight into intertidal ecology. Mar Biol 162(10):2093–2106. doi:10.1007/s00227-015-2739-0

    Article  Google Scholar 

  • Casu M, Casu D, Lai T, Cossu P, Curini-Galletti M (2006) Inter-simple sequence repeat markers reveal strong genetic differentiation among populations of the endangered mollusc Patella ferruginea (Gastropoda: Patellidae) from two Sardinian marine protected areas. Mar Biol 149(5):1163–1174. doi:10.1007/s00227-006-0255-y

    Article  CAS  Google Scholar 

  • Casu M, Rivera-Ingraham GA, Cossu P, Lai T, Sanna D, Dedola GL, Sussarellu R, Sella G, Cristo B, Curini-Galletti M, García-Gómez CJ, Espinosa F (2011) Patterns of spatial genetic structuring in the endangered limpet Patella ferruginea: implications for the conservation of a Mediterranean endemic. Genetica 139:1293–1308. doi:10.1007/s10709-012-9631-3

    Article  CAS  Google Scholar 

  • Coll M, Piroddi C, Albouy C, Lasram FBR, Cheung WWL, Christensen V, Karpouzi VS, Guilhaumon F, Mouillot D, Paleczny M, Palomares ML, Steenbeck J, Trujillo P, Watsin R, Pauly D (2012) The Mediterranean Sea under siege: spatial overlap between marine biodiversity, cumulative threats and marine reserves. Glob Ecol Biogeogr 21(4):465–480. doi:10.1111/j.1466-8238.2011.00697.x

    Article  Google Scholar 

  • Coppa S, De Lucia GA, Massaro G, Magni P (2012) Density and distribution of Patella ferruginea in a Marine Protected Area (western Sardinia, Italy): constraint analysis for population conservation. Medit Mar Sci 13(1):108–117. doi:10.12681/mms.27

    Article  Google Scholar 

  • Coppa S, De Lucia GA, Massaro G, Camedda A, Marra S, Magni P, Perilli A, Di Bitetto M, García-Gómez JC, Espinosa F (2015) Is the establishment of MPAs enough to preserve endangered intertidal species? The case of Patella ferruginea in Mal di Ventre Island (W Sardinia, Italy). Aquat Conserv 26(4):623–638. doi:10.1002/aqc.2579

    Article  Google Scholar 

  • Cossu A, De Luca M (2014) Distribution of Patella ferruginea Gmelin 1791 in “no entry-zone” and areas of partial use in the MPA Asinara island. Biol Mar Med 21(1):132–135

    Google Scholar 

  • Cossu P, Dedola GL, Scarpa F, Sanna D, Lai T, Maltagliati F, Curini-Galletti M, Casu M (2015) Patterns of spatial genetc variation in Patella ulyssiponensis: insights from the western Mediterranean marine ecoregion. Hydrobiologia 755(1):39–55. doi:10.1007/s10750-015-2216-2

    Article  CAS  Google Scholar 

  • Dakin EE, Avise JC (2004) Microsatellite null alleles in parentage analysis. Heredity 93:504–509. doi:10.1038/sj.hdy.6800545

    Article  CAS  Google Scholar 

  • De Aranzamendi MC, Sahade R, Tatίan M, Chiappero MB (2008) Genetic differentiation between morphotypes in the antarctic limpet Nacella concinna as revealed by inter-simple sequence repeat markers. Mar Biol 154(5):875–885. doi:10.1007/s00227-008-0980-5

    Article  CAS  Google Scholar 

  • Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator V2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14(1):209–214. doi:10.1111/1755-0998.12157

    Article  CAS  Google Scholar 

  • Espinosa F, Guerra-García J M, Fa D, García-Gómez JC (2006) Aspects of reproduction and their implication for the conservation of the endangered limpet Patella ferruginea. Invertebr Reprod Dev 49:85–92. doi:10.1080/07924259.2006.9652197

    Article  Google Scholar 

  • Espinosa F, Rivera-Ingraham GA, Maestre M, González A, Bazairi H, García–Gómez JC (2013) Updated global distribution of the threatened limpet Patella ferruginea (Gastropoda: Patellidae): an example of biodiversity loss in the Mediterranean. Oryx 48(2):266–275. doi:10.1017/S0030605312000580

    Article  Google Scholar 

  • Fauvelot C, Bertozzi F, Costantini F, Airoldi L, Abbiati M (2009) Lower genetic diversity in the limpet Patella caerulea on urban coastal structures compared to natural rocky habitats. Mar Biol 156(11):2313–2323. doi:10.1007/s00227-009-1259-1

    Article  Google Scholar 

  • Foll M, Gaggiotti O (2008) A Genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a bayesian perspective. Genetics 180(2):977–993. doi:10.1534/genetics.108.092221

    Article  Google Scholar 

  • Frankham R, Briscoe DA, Ballou JD (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gaggiotti OE, Vetter RD (1999) Effect of life history strategy, environmental variability, and overexploitation on the genetic diversity of pelagic fish populations. Can J Fish Aquat Sci 56(8):1376–1388. doi:10.1139/f99-060

    Google Scholar 

  • García-Gómez JC, Guerra-García JM, Espinsa F, Maestre MJ, Rivera-Ingraham G, Fa D, González AR, ruiz-tabares A, López-Fé CM (2015) Artificial micro-reserves networks (AMMRNs): an innovative approach to conserve marine littoral biodiversity and protect endangered species. Mar Ecol 36(3):259–277. doi:10.1111/maec.12167

    Article  Google Scholar 

  • Gmelin JF (1791) Vermes. In: Gmelin JF (ed) Caroli a Linnaei Systema Naturae per Regna Tria Naturae, Editio Decima Tertia, Aucta Reformata. Tome 1, Pars 6 (Vermes). GE Beer, Leipzig, pp. 3021–3910

    Google Scholar 

  • Guillot G (2008) Inference of structure in subdivided populations at low levels of genetic differentiation. The correlated allele frequencies model revisited. Bioinformatics 24(19):222–2228. doi:10.1093/bioinformatics/btn419

    Article  Google Scholar 

  • Guillot G, Mortier F, Estoup A (2005) GENELAND: A computer package for landscape genetics. Mol Ecol Notes 5(3):708–711. doi:10.1111/j.1471-8286.2005.01031.x

    Article  Google Scholar 

  • Guillot G, Santos F, Estoup A (2008) Analysing georeferenced population genetics data with Geneland: a new algorithm to deal with null alleles and a friendly graphical user interface. Bioinformatics 24(11):140–1407. doi:10.1093/bioinformatics/btn136

    Article  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2(4):618–620. doi:10.1046/j.1471-8286.2002.00305.x

    Article  Google Scholar 

  • Hauser L, Carvalho GR (2008) Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish Fish 9(4):333–362. doi:10.1111/j.1467-2979.2008.00299.x

    Article  Google Scholar 

  • Hedgecock D, Pudovkin AI (2011) Sweepstakes reproductive success in highly fecund marine fish and shellfish: a review and commentary. B Mar Sci 87(4):971–1002. doi:10.5343/bms.2010.1051

    Article  Google Scholar 

  • Hoban SM, Gaggiotti OE, Bertorelle G (2013) The number of markers and samples needed for detecting bottlenecks under realistic scenarios, with and without recovery: a simulation-based study. Mol Ecol 22(13):3444–3450. doi:10.1111/mec.12258

    Article  Google Scholar 

  • Holleley CE, Nichols RA, Whitehead MR, Adamack AT, Gunn MR, Sherwin WB (2014) Testing single-sample estimators of effective population size in genetically structured populations. Conserv Genet 15(1):23–35. doi:10.1007/s10592-013-0518-3

    Article  Google Scholar 

  • Huff DR, Peakall R, Smouse PE (1993) RAPD variation within and among natural populations of outcrossing buffalograss Buchloe dactyloides (Nutt) Engelm. Theor Appl Genet 86(8):927–934. doi:10.1007/BF00211043

    Article  CAS  Google Scholar 

  • Iacchei MB-OT, Selkoe KA, Bird CE, García-Rodríguez FJ, Toonen RJ (2013) Combined analyses of kinship and F ST suggest potential drivers of chaotic genetic patchiness in high-gene flow populations. Mol Ecol 22(13):3476–3494. doi:10.1111/mec.12341

    Article  Google Scholar 

  • Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6:13. doi:10.1186/1471-2156-6-13

    Article  Google Scholar 

  • Johannesson K (2009) Inverting the null-hypothesis of speciation: a marine snail perspective. Evol Ecol 23(1):5–16. doi:10.1007/s10682-007-9225-1

    Article  Google Scholar 

  • Johnson MS, Black R (2006) Islands increase genetic subdivision and disrupt patterns of connectivity of intertidal snails in a complex archipelago. Evolution Int J Org Evolution 60(12):2498–2506. doi:10.1554/06-211.1

    Article  CAS  Google Scholar 

  • Johnson MP, Crowe TP, McAllen R, Allcock AL (2008) Characterising the marine Natura 2000 network for the Atlantic Region. Aquat Conserv 18(1):86–97. doi:10.1002/aqc.827

    Article  Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24(11):1403–1405. doi:10.1093/bioinformatics/btn129

    Article  CAS  Google Scholar 

  • Jombart T, Devillard S, Dufour AB, Pontier D (2008) Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101:92–103. doi:10.1038/hdy.2008.34

    Article  CAS  Google Scholar 

  • Kauer MO, Dieringer D, Schlotterer C (2003) A microsatellite variability screen for positive selection associated with the ‘Out of Africa’ habitat expansion of Drosophila melanogaster. Genetics 165(3):1137–1148

    CAS  Google Scholar 

  • Keenan K, McGinnity P, Cross TF, Crozier WW, Prodöhl PA (2013) diveRsity: an R package for the estimation and exploration of population genetic parameters and their associated errors. Methods Ecol Evol 4(8):782–788. doi:10.1111/2041-210X.12067

    Article  Google Scholar 

  • Kelly RP, Palumbi SR (2010) Genetic structure among 50 species of the northeastern Pacific rocky intertidal community. PLoS One 5(1):e8594. doi:10.1371/journal.pone.0008594

    Article  Google Scholar 

  • Krueger-Hadfield SA, Roze D, Mauger S, Valero M (2013) intergametophytic selfing and microgeographic genetic structure shape populations of the intertidal red seaweed Chondrus crispus. Mol Ecol 22(12):3242–3260. doi:10.1111/mec.12191

    Article  CAS  Google Scholar 

  • Landguth EL, Cushman SA, Schwartz MK, Mckelvey KS, Murphy M, Luikart G (2010) Quantifying the lag time to detect barriers in landscape genetics. Mol Ecol 19(19):4179–4191. doi:10.1111/j.1365-294X.2010.04808.x

    Article  CAS  Google Scholar 

  • Leblois R, Estoup A, Streiff R (2006) Genetics of recent habitat contraction and reduction in population size: does isolation by distance matter? Mol Ecol 15(12):3601–3615. doi:10.1111/j.1365-294X.2006.03046.x

    Article  Google Scholar 

  • Lejeusne C, Chevaldonné P, Pergent-Martini C, Boudouresque CF, Pérez T (2010) Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends Ecol Evol 25(4):250–260. doi:10.1016/j.tree.2009.10.009

    Article  Google Scholar 

  • Lemer S, Plane S (2014) Effects of habitat fragmentation on the genetic structure and connectivity of the black-lipped pearl oyster Pinctada margaritifera populations in French Polynesia. Mar Biol 161(9):2035–2049. doi:10.1007/s00227-014-2484-9

    Article  Google Scholar 

  • Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82(11):1420–1425

    Article  Google Scholar 

  • Lotterhos KE, Dick SJ, Haggarty DR (2013) Evaluation of rockfish conservation area networks in the United States and Canada relative to the dispersal distance for black rockfish (Sebastes melanops). Evol Appl 7(2):238–259. doi:10.1111/eva.12115

    Article  Google Scholar 

  • Luikart G, Cornuet J (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12(1):228–237. doi:10.1111/j.1523-1739.1998.96388.x

    Article  Google Scholar 

  • Luikart G, Ryman N, Tallmon D, Schwartz M, Allendorf F (2010) Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conserv Genet 11(2):355–373. doi:10.1007/s10592-010-0050-7

    Article  CAS  Google Scholar 

  • Machordom A, Ramírez-Escobar U, Acevedo I, García-Jiménez R, Cabezas P, Calvo M, Toledo C, Bloor P (2010) Isolation and characterisation of polymorphic microsatellite markers for the endangered ferreous limpet Patella ferruginea (Gastropoda, Patellidae). Conserv Genet 11(3):1083–1086. doi:10.1007/s10592-009-9813-4

    Article  CAS  Google Scholar 

  • McInerney CE, Allcock AL, Johnson MP, Prodohl PA (2009) Understanding marine reserve function in a seascape genetics context: Nucella lapillus in Strangford Lough (Northern Ireland) as an example. Aquat Biol 7:45–58. doi:10.3354/ab00177

    Article  Google Scholar 

  • McInerney CE, Allcock AL, Johnson MP, Prodöhl PA (2012) Ecological coherence in marine reserve network design: an empirical evaluation of sequential site selection using genetic structure. Biol Conserv 152:262–270. doi:10.1016/j.biocon.2012.03.009

    Article  Google Scholar 

  • Mokhtar-Jamaï K, Pascual M, Ledoux JB, Coma R, Féral JP, Garrabou J, Aurelle D (2011) From global to local genetic structuring in the red gorgonian Paramuricea clavata: the interplay between oceanographic conditions and limited larval dispersal. Mol Ecol 20(16):3291–3305. doi:10.1111/j.1365-294X.2011.05176.x

    Article  Google Scholar 

  • Moore JA, Tallmon DA, Nielsen J, Pyare S (2011) Effects of landscape on boreal toad gene flow: does the pattern-process relationship hold true across distinct landscapes at the northern range margin? Mol Ecol 20(23):4858–4869. doi:10.1111/j.1365-294X.2011.05313.x

    Article  Google Scholar 

  • Narum SR (2006) beyond Bonferroni: less conservative analyses for conservation genetics. Conserv Genet 7(5):783–787. doi:10.1007/s10592-005-9056-y

    Article  CAS  Google Scholar 

  • Palstra FP, Fraser DJ (2012) Effective/census population size ratio estimation: a compendium and appraisal. Ecol Evol 2(9):2357–2365. doi:10.1002/ece3.329

    Article  Google Scholar 

  • Palstra FP, Ruzzante DE (2008) genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Mol Ecol 17(15):3428–3447. doi:10.1111/j.1365-294X.2008.03842.x

    Article  Google Scholar 

  • Pante E, Simon-Bouhet B (2013) Marmap: a package for importing, plotting and analyzing bathymetric and topographic data in R. PLoS One 8(9):e73051. doi:10.1371/journal.pone.0073051

    Article  CAS  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28(19):2537–2539. doi:10.1093/bioinformatics/bts460

    Article  CAS  Google Scholar 

  • Peery MZ, Kirby R, Reid BN et al (2012) Reliability of genetic bottleneck tests for detecting recent population declines. Mol Ecol 21(14):3403–3418. doi:10.1111/j.1365-294X.2012.05635.x

    Article  Google Scholar 

  • Peery MZ, Reid BN, Kirby R, Stoelting R, Doucet-Bëer E, Robinson S, Vásquez-Carrillo C, Pauli JN, Palsbøll PJ (2013) More precisely biased: increasing the number of markers is not a silver bullet in genetic bottleneck testing. Mol Ecol 22(13):3451–3457. doi:10.1111/mec.12394

    Article  Google Scholar 

  • Perez M, Branco M, Llavona A, Ribeiro PA, Santos AM, Hawkins SJ, Dávila JA, Presa P, Alexandrino P (2007) Development of microsatellite loci for the black-footed limpet, Patella depressa, and cross-amplification in two other Patella species. Conserv Genet 8(3):739–742. doi:10.1007/s10592-006-9195-9

    Article  CAS  Google Scholar 

  • Pinsky ML, Montes HR Jr, Palumbi SR (2010) Using isolation by distance and effective density to estimate dispersal scales in anemonefish. Evolution Int J org Evolution 64(9):2688–2700. doi:10.1111/j.1558-5646.2010.01003.x

    Article  Google Scholar 

  • Pinsky ML, Palumbi SR, Andréfouët S, Purkis SJ (2012) Open and closed seascapes: where does habitat patchiness create populations with high fractions of self-recruitment? Ecol Appl 22(4):1257–1267. doi:10.1890/11-1240.1

    Article  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: A computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Pringle JM, Wares JP (2007) Going against the flow: maintenance of alongshore variation in allele frequency in a coastal ocean. Mar Ecol Prog Ser 335:65–84. doi:10.3354/meps.335069

    Article  Google Scholar 

  • Pruett CL, Winker K (2008) The effect of sample size on genetic diversity estimates in the song sparrow Melospiza melodia. J Avian Biol 39(2):252–256. doi:10.1111/j.0908-8857.2008.04094.x

    Article  Google Scholar 

  • Puebla O, Bermingham E, McMillan WO (2012) On the spatial scale of dispersal in coral reef fishes. Mol Ecol 21(23):5675–5688. doi:10.1111/j.1365-294X.2012.05734.x

    Article  CAS  Google Scholar 

  • Pujolar JM, Schiavina M, Di Franco A, Melià P, Guidetti P, Gatto M, De Leo GA, Zane L (2013) Understanding the effectiveness of marine protected areas using genetic connectivity patterns and Lagrangian simulations. Diversity Distrib 19(12):153–1542. doi:10.1111/ddi.12114

    Article  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 18 June 2015

  • Ribeiro PA, Xavier R, Santos AM, Hawkins SJ (2009) Reproductive cycles of four species of Patella (Mollusca: Gastropoda) on the northern and central Portuguese coast. J Mar Biol Assoc UK 89(6):1215–1221. doi:10.1017/S0025315409000320

    Article  Google Scholar 

  • Ribeiro PA, Branco M, Hawkins SJ, Santos AM (2010) Recent changes in the distribution of a marine gastropod, Patella rustica, across the Iberian Atlantic coast did not result in diminished genetic diversity or increased connectivity. J Biogeogr 37(9):1782–1796. doi:10.1111/j.1365-2699.2010.02330.x

    Article  Google Scholar 

  • Rivera-Ingraham GA, Espinosa F, García-Gómez JC (2011a) Conservation status and updated census of Patella ferruginea (Gastropoda, Patellidae) in Ceuta: distribution patterns and new evidence of the effects of environmental parameters on population structure. Anim Biodivers Conserv 34(1):83–99

    Google Scholar 

  • Rivera-Ingraham GA, Espinosa F, García-Gómez JC (2011b) Environmental mediated sex change in the endangered limpet Patella ferruginea (Gastropoda, Patellidae). J Mollus Stud 77(3):226–231. doi:10.1093/mollus/eyr007

    Article  Google Scholar 

  • Rivera-Ingraham GA, Espinosa F, García–Gómez JC (2015) Long-term monitoring of the critically endangered limpet Patella ferruginea Gmelin, 1791: new ecological insights and first demographic results. J Mollus Stud 81(1):124–130. doi:10.1093/mollus/eyu061

    Article  Google Scholar 

  • Robinson JD, Moyer GR (2013) Linkage disequilibrium and effective size when generations overlap. Evol Appl 6(2):290–302. doi:10.1111/j.1752-4571.2012.00289.x

    Article  Google Scholar 

  • Rousset F (2008) Genepop’007: a complete re-implementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8(1):103–106. doi:10.1111/j.1471-8286.2007.01931.x

    Article  Google Scholar 

  • Saarinen EV, Austin JD, Daniels JC (2009) Genetic estimates of contemporary effective population size in an endangered butterfly indicate a possible role for genetic compensation. Evol Appl 3(1):28–39. doi:10.1111/j.1752-4571.2009.00096.x

    Article  Google Scholar 

  • Sanna D, Cossu P, Dedola GL, Scarpa F, Maltagliati F, Castelli A, Franzoi P, Lai T, Cristo B, Curini-Galletti M, francalacci P, Casu M (2013) Mitochondrial DNA reveals genetic structuring of Pinna nobilis across the Mediterranean Sea. PLoS One 8(6):e67372. doi:10.1371/journal.pone.0067372

    Article  CAS  Google Scholar 

  • Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol lett 9(5):615–629. doi:10.1111/j.1461-0248.2006.00889.x

    Article  Google Scholar 

  • Selkoe KA, Gaines SD, Caselle JE, Warner RR (2006) Current shifts and kin aggregation explain genetic patchiness in fish recruits. Ecology 87(12):3082–3094. doi:10.1890/0012-9658(2006)87[3082:CSAKAE]2.0.CO;2

    Article  Google Scholar 

  • Shanks AL (2009) Pelagic larval duration and dispersal distance revisited. Biol Bull 216(3):373–385

    Article  Google Scholar 

  • Short Bull RA, Cushman SA, Mace R, Chilton T, Kendall KC, Landguth EL, Schwartz MK, McKelvey K, Allendorf FW, Luikart G (2011) Why replication is important in landscape genetics: American black bear in the Rocky Mountains. Mol Ecol 20(6):1092–1107. doi:10.1111/j.1365-294X.2010.04944.x

    Article  Google Scholar 

  • Skrbinšek T, Jelenčič M, Waits LP, Potočnik H, Kos I, Trontelj P (2012) Using a reference population yardstick to calibrate and compare genetic diversity reported in different studies: an example from the brown bear. Heredity 109:299–305. doi:10.1038/hdy.2012.42

    Article  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4(3):535–538. doi:10.1111/j.1471-8286.2004.00684.x

    Article  Google Scholar 

  • Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7(2):167–184. doi:10.1007/s10592-005-9100-y

    Article  Google Scholar 

  • Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary N e using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol Appl 3(3):244–262. doi:10.1111/j.1752-4571.2009.00104.x

    Article  Google Scholar 

  • Waples RS, England PR (2011) Estimating effective population size on the basis of linkage disequilibrium in the face of migration. Genetics 189(2):633–644. doi:10.1534/genetics.111.132233

    Article  Google Scholar 

  • Waples RS, Gaggiotti O (2006) What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol 15(6):1419–1439. doi:10.1111/j.1365-294X.2006.02890.x

    Article  CAS  Google Scholar 

  • Waples RS, Antao T, Luikart G (2014) Effects of overlapping generations on linkage disequilibrium estimates of effective population size. Genetics 197(2):769–780. doi:10.1534/genetics.114.164822

    Article  Google Scholar 

  • Weir B, Cockerham C (1984) Estimating F-statistics for the analysis of population structure. Evol Int J Org Evol 38(6):1358–1370. doi:10.2307/2408641

    Article  Google Scholar 

  • Wood AR, Gardner JPA (2007) Small spatial scale population genetic structure in two limpet species endemic to the Kermadec islands, New Zealand. Mar Ecol Prog Ser 349:159–170. doi:10.3354/meps07110

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank Roberta Falchi and Stefano Sechi for their valuable help during the sampling campaigns at the Asinara Island and Tavolara–Punta Coda Cavallo MPAs, respectively. We also thank the Ministero dell’Ambiente e della Tutela del Territorio e del Mare and the Istituto Superiore per la Protezione e Ricerca Ambientale (ISPRA) for providing the necessary permits to collect tissue samples. This study was financially supported by (1) P.O.R. FESR 2007–2013—Linea di attività 4.1.2.b del—Asse IV “Ambiente, Attrattività Culturale e Turismo”—Lotto 2: CIG Z90063A764 “Attività di monitoraggio della specie di particolare interesse conservazionistico Patella ferruginea (Mollusca: Gastropoda) attraverso tecniche di biologia molecolare e censimento della popolazione”; (2) Marine Protected Area of Asinara Island project grant 2014: “Studio della variabilità genetica di Patella ferruginea (Mollusca: Gastropoda) nel mesolitorale dell’Area Marina Protetta dell’Isola dell’Asinara.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piero Cossu.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest, that all participants of the study gave their consent, and that sampling was carried out according to the national legislation after all required permission had been obtained.

Additional information

Communicated by T. Reusch.

Reviewed by R. T. Pereyra and an undisclosed expert.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cossu, P., Scarpa, F., Dedola, G.L. et al. Surviving at the edge of a fragmented range: patterns of genetic diversity in isolated populations of the endangered giant Mediterranean limpet (Patella ferruginea). Mar Biol 164, 41 (2017). https://doi.org/10.1007/s00227-017-3080-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-017-3080-6

Keywords

Navigation