Skip to main content
Log in

Surfactant-laden drop jellyfish-breakup mode induced by the Marangoni effect

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Drop breakup is a familiar event in both nature and technology. In this study, we find that the bag breakup mode can be replaced by a new breakup mode: jellyfish breakup, when the surfactant concentration of a surfactant-laden drop is high. This new breakup mode has a morphology resembling a jellyfish with many long tentacles. This is due to the inhomogeneous distribution of surfactant in the process of drop deformation and breakup. The thin film of liquid can remain stable as a result of the Marangoni effect. Finally, we propose that the dimensionless surfactant concentration can serve as a criterion for breakup mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Betz AR, Xu J, Qiu H, Attinger D(2010) Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling? Appl Phys Lett 97(14):141909

    Article  Google Scholar 

  • Chou WH, Faeth GM (1998) Temporal properties of secondary drop breakup in the bag breakup regime. Int J Multiph Flow 24(98):889–912

    Article  MATH  Google Scholar 

  • Cui Y, Gupta NR (2016) Numerical study of surfactant effects on the buoyancy-driven motion of a drop in a tube. Chem Eng Sci 144:48–57

    Article  Google Scholar 

  • Davanlou A, Lee JD, Basu S, Kumar R (2015) Effect of viscosity and surface tension on breakup and coalescence of bicomponent sprays. Chem Eng Sci 131:243–255

    Article  Google Scholar 

  • De Bruijn RA (1993) Tipstreaming of drops in simple shear flows. Chem Eng Sci 48(2):277–284

    Article  Google Scholar 

  • De Vincent Saint MR, Petit J, Aytouna M, Delville JP, Bonn D, Kellay H (2012) Dynamic interfacial tension effects in the rupture of liquid necks. J Fluid Mech 692:499–510

    Article  MATH  Google Scholar 

  • Dorr GJ, Wang S, Mayo LC, Mccue SW, Forster WA, Hanan J, He XK (2015) Impaction of spray droplets on leaves: influence of formulation and leaf character on shatter, bounce and adhesion. Exp Fluids 56(7):1–17

    Article  Google Scholar 

  • Guildenbecher DR, Lopez-Rivera C, Sojka PE (2009) Secondary atomization. Exp Fluids 46(3):371–402

    Article  Google Scholar 

  • Jain M, Prakash RS, Tomar G, Ravikrishna RV (2015) Secondary breakup of a drop at moderate Weber numbers. Proc R Soc Math Phys Eng Sci 471: 20140930

    Article  Google Scholar 

  • Jiang L, Agrawal AK (2015) Spray features in the near field of a flow-blurring injector investigated by high-speed visualization and time-resolved PIV. Exp Fluids 56(5):1–13

    Google Scholar 

  • Karapetsas G, Bontozoglou V (2013) The primary instability of falling films in the presence of soluble surfactants. J Fluid Mech 729:123–150

    Article  MathSciNet  MATH  Google Scholar 

  • Karapetsas G, Craster RV, Matar OK (2011) On surfactant-enhanced spreading and superspreading of liquid drops on solid surfaces. J Fluid Mech 670(2):5–37

    Article  MathSciNet  MATH  Google Scholar 

  • Kékesi T, Amberg G, Wittberg LP (2016) Drop deformation and breakup in flows with shear. Chem Eng Sci 140:319–329

    Article  Google Scholar 

  • Krzeczkowski SA (1980) Measurement of liquid droplet disintegration mechanisms. Int J Multiph Flow 6(3):227–239

    Article  Google Scholar 

  • Kulkarni V, Sojka PE (2014) Bag breakup of low viscosity drops in the presence of a continuous air jet. Phys Fluids 26(7):557–561

    Article  Google Scholar 

  • Liu Z, Reitz RD (1997) An analysis of the distortion and breakup mechanisms of high speed liquid drops. Int J Multiph Flow 23(4):631–650

    Article  MATH  Google Scholar 

  • Liu J, Yu Q, Guo Q (2012) Experimental investigation of liquid disintegration by rotary cups. Chem Eng Sci 73(19):44–50

    Article  Google Scholar 

  • Lu J, Corvalan CM (2012) Coalescence of viscous drops with surfactants. Chem Eng Sci 78(21):9–13

    Article  Google Scholar 

  • Maindarkar SN, Bongers P, Henson MA (2013) Predicting the effects of surfactant coverage on drop size distributions of homogenized emulsions. Chem Eng Sci 89(4):102–114

    Article  Google Scholar 

  • Maindarkar S, Dubbelboer A, Meuldijk J, Hoogland H, Henson M (2014) Prediction of emulsion drop size distributions in colloid mills. Chem Eng Sci 118:114–125

    Article  Google Scholar 

  • Moita AS, Moreira, A. L. N. (2012) Scaling the effects of surface topography in the secondary atomization resulting from droplet/wall interactions. Exp Fluids 52(3):679–695

    Article  Google Scholar 

  • Muddu RJ, Lu J, Sojka PE, Corvalan CM (2012) Threshold wavelength on filaments of complex fluids. Chem Eng Sci 69(1):602–606

    Article  Google Scholar 

  • Opfer L, Roisman IV, Venzmer J, Klostermann M, Tropea C (2014) Droplet-air collision dynamics: evolution of the film thickness. Phys Rev E 89(1):013023

    Article  Google Scholar 

  • Pawar S, Padding J, Deen N, Jongsma A, Innings F, Kuipers, J. A. M. (2015) Numerical and experimental investigation of induced flow and droplet–droplet interactions in a liquid spray. Chem Eng Sci 138(40):17–30

    Article  Google Scholar 

  • Pilch M, Erdman CA (1987) Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. Int J Multiph Flow 13(6):741–757

    Article  Google Scholar 

  • Ponce-Torres A, Vega EJ, Montanero JM (2016) Effects of surface-active impurities on the liquid bridge dynamics. Exp Fluids 57(5):1–12

    Article  Google Scholar 

  • Rimbert N, Castanet G (2010) Crossover between Rayleigh–Taylor instability and turbulent cascading atomization mechanism in the bag-breakup regime. Physical Review E 84:1183–1206

    Google Scholar 

  • Sahu RP, Sinha-Ray S, Yarin AL, Pourdeyhimi B (2013) Blowing drops off a filament. Soft Matter 9(26), 6053–6071

    Article  Google Scholar 

  • Sichani AB, Emami MD (2015) A droplet deformation and breakup model based on virtual work principle. Phys Fluids 27(3):032103

    Article  Google Scholar 

  • Theofanous TG (2011) Aerobreakup of Newtonian and viscoelastic liquids. Annu Rev Fluid Mech 43:661–690

    Article  MATH  Google Scholar 

  • Theofanous TG, Li GJ, Dinh TN (2004) Aerobreakup in rarefied supersonic gas flows. J Fluid Eng 126(4):516–527

    Article  Google Scholar 

  • Villermaux E, Bossa B (2009) Single-drop fragmentation determines size distribution of raindrops. Nat Phys 5(9): 697–702

    Article  Google Scholar 

  • Wang C, Chang S, Wu H, Xu J (2014) Modeling of drop breakup in the bag breakup regime. Appl Phys Lett 104(15):154107

    Article  Google Scholar 

  • Wierzba A (1990) Deformation and breakup of liquid drops in a gas stream at nearly critical Weber numbers. Exp Fluids 9(1–2):59–64

    Article  Google Scholar 

  • Zhao H, Liu HF, Li WF, Xu JL (2010) Morphological classification of low viscosity drop bag breakup in a continuous air jet stream. Phys Fluids 22(11):507–538

    Article  Google Scholar 

  • Zhao H, Liu HF, Cao XK, Li WF, Xu JL (2011) Breakup characteristics of liquid drops in bag regime by a continuous and uniform air jet flow. Int J Multiph Flow 37(5):530–534

    Article  Google Scholar 

  • Zhao H, Zhang WB, Xu JL, Li WF, Liu HF (2016) Influence of surfactant on the drop bag breakup in a continuous air jet stream. Phys Fluids 28(5):697–702

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (21506059), Fundamental Research Funds for the Central Universities (WB1617004), and Shanghai Natural Science Foundation (15ZR1409500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Feng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Zhang, WB., Xu, JL. et al. Surfactant-laden drop jellyfish-breakup mode induced by the Marangoni effect. Exp Fluids 58, 13 (2017). https://doi.org/10.1007/s00348-016-2296-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-016-2296-4

Keywords

Navigation