Skip to main content
Log in

Reizdarm und Reizmagen – Pathophysiologie und Biomarker

Irritable bowel syndrome and functional dyspepsia—pathophysiology and biomarkers

  • Schwerpunkt
  • Published:
Der Gastroenterologe Aims and scope

Zusammenfassung

Funktionelle Magendarmerkrankungen, wie Reizdarm oder Reizmagen, gehören zu den häufigsten Gründen, warum Patienten den Arzt aufsuchen. Diagnose und gezielte Therapie bleiben bis heute eine große Herausforderung. Beide Syndrome werden bisher rein symptomenbasiert nach Ausschlussdiagnose diagnostiziert. Inzwischen ist aber klar, dass Reizdarm und Reizmagen mit definierten strukturellen, molekularen, genetischen, immunologischen, nervalen und psychosozialen Veränderungen assoziiert sind. Symptome werden durch Stress, Motilitätsstörungen, gastrointestinale Infektionen, Immunaktivierung sowie erhöhte mechanische und chemische Sensibilität ausgelöst bzw. verschlimmert. Die vielen heute bekannten Pathomechanismen spiegeln zum einen den multifaktoriellen Charakter wider, sind zum anderen aber auch Hinweise auf pathophysiologisch unterschiedliche Erkrankungssubtypen. Es ist zu erwarten, dass die weitere Aufklärung pathophysiologisch relevanter Faktoren und deren Clusteranalyse und Korrelation mit den klinischen Symptomen die Diagnostik und Therapie funktioneller Magen-Darm-Erkrankungen verbessert. In Zukunft könnten Biomarker helfen, Patienten besser zu klassifizieren und damit eine spezifische Therapieentscheidung zu ermöglichen.

Abstract

Functional gastrointestinal diseases such as irritable bowel syndrome (IBS) or functional dyspepsia (FD) are the most frequent causes why patients seek medical care. Diagnosis and therapy is a challenge. Both IBS and FD are a primarily symptom-based exclusion diagnosis. Recent findings indicate that IBS and FD are associated with well-defined structural, molecular, genetic, immunological, neural and psychosocial abnormalities. Symptoms are caused or worsen after particular diet, stress, gastroenteritis as well as mechanical and chemical hypersensitivity. The numerous pathophysiological mechanisms of IBS and FD reflect the multifactorial character of these diseases and strongly suggest the existence of distinct disease entities. It is expected that further insights into pathophysiological mechanisms, their clustering and association with clinical symptoms will improve diagnosis and therapy. The major challenge will be the development of biomarkers to better characterize IBS and FD subgroups and to treat the specific pathomechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Akbar A, Yiangou Y, Facer P et al (2008) Increased capsaicin receptor TRPV1-expressing sensory fibres in irritable bowel syndrome and their correlation with abdominal pain. Gut 57:923–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Andresen V, Montori VM, Keller J et al (2008) Effects of 5‑hydroxytryptamine (serotonin) type 3 antagonists on symptom relief and constipation in nonconstipated irritable bowel syndrome: A systematic review and metaanalysis of randomized controlled trials. Clin Gastroenterol Hepatol 6:545–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Atkinson W, Lockhart S, Whorwell PJ et al (2006) Altered 5‑hydroxytryptamine signaling in patients with constipation- and diarrhea-predominant irritable bowel syndrome. Gastroenterology 130:34–43

    Article  CAS  PubMed  Google Scholar 

  4. Berdún S, Rychter J, Vergara P (2015) Effects of nerve growth factor antagonist K252a on peritoneal mast cell degranulation: Implications for rat postoperative ileus. Am J Physiol Gastrointest Liver Physiol 309:G801–G806

    PubMed  Google Scholar 

  5. Buhner S, Li Q, Vignali S, Barbara G (2009) Activation of human enteric neurons by supernatants of colonic biopsy specimens from patients with irritable bowel syndrome. Gastroenterology 137:1425–1434

    Article  CAS  PubMed  Google Scholar 

  6. Buhner S, Li Q, Berger T et al (2012) Submucous rather than myenteric neurons are activated by mucosal biopsy supernatants from irritable bowel syndrome patients. Neurogastroenterol Motil 24:1134–e572

    Article  CAS  PubMed  Google Scholar 

  7. Buhner S, Braak B, Li Q et al (2014) Neuronal activation by mucosal biopsy supernatants from irritable bowel syndrome patients is linked to visceral sensitivity. Exp Physiol 2014:1299–1311

    Article  Google Scholar 

  8. Camilleri M, McKinzie S, Busciglio I et al (2008) Prospective study of motor, sensory, psychologic, and autonomic functions in patients with irritable bowel syndrome. Clin Gastroenterol Hepatol 6:772–781

    Article  PubMed  PubMed Central  Google Scholar 

  9. Camilleri M (2012) Peripheral mechanisms in irritable bowel syndrome. N Engl J Med 367:1626–1635

    Article  CAS  PubMed  Google Scholar 

  10. Camilleri M (2014) Physiological underpinnings of irritable bowel syndrome: Neurohormonal mechanisms. J Physiol 592:2967–2980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Camilleri M, Shin A, Busciglio I et al (2014) Validating biomarkers of treatable mechanisms in irritable bowel syndrome. Neurogastroenterol Motil 26:1677–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Camilleri M (2015) Biomarkers and personalized therapy in lower functional gastrointestinal disorders. Aliment Pharmacol Ther 42:818–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Celli J, Rappold G, Niesler B (2016) The Human Serotonin Type 3 Receptor Gene (HTR3A-E) Allelic Variant Database. Hum Mutat. doi:10.1002/humu.23136

    PubMed  Google Scholar 

  14. Cenac N, Andrews CN, Holzhausen M et al (2007) Role for protease activity in visceral pain in irritable bowel syndrome. J Clin Invest 117:636–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Choi YJ, Kim N, Kim J et al (2016) Upregulation of Vanilloid Receptor-1 in functional dyspepsia with or without Helicobacter pylori infection. Medicine (Baltimore) 95:e3410

    Article  CAS  Google Scholar 

  16. Cirillo C, Bessissow T, Desmet AS et al (2015) Evidence for neuronal and structural changes in submucous ganglia of patients with functional dyspepsia. Am J Gastroenterol 110:1205–1215

    Article  CAS  PubMed  Google Scholar 

  17. Collins SM, Chang C, Mearin F (2012) Postinfectious chronic gut dysfunction: From bench to bedside. Am J Gastroenterol Suppl 1:2–8

    Article  CAS  Google Scholar 

  18. Czogalla B, Schmitteckert S, Houghton LA et al (2015) A meta-analysis of immunogenetic case-control association studies in irritable bowel syndrome. Neurogastroenterol Motil 27:717–727

    Article  CAS  PubMed  Google Scholar 

  19. Cremon C, Gargano L, Morselli-Labate AM et al (2009) Mucosal immune activation in irritable bowel syndrome: Gender-dependence and association with digestive symptoms. Am J Gastroenterol 104:392–400

    Article  CAS  PubMed  Google Scholar 

  20. Dothel G, Barbaro MR, Boudin H et al (2015) Nerve fiber outgrowth is increased in the intestinal mucosa of patients with irritable bowel syndrome. Gastroenterology 148:1002–1011

    Article  CAS  PubMed  Google Scholar 

  21. Ek WE, Reznichenko A, Ripke S et al (2015) Exploring the genetics of irritable bowel syndrome: A GWA study in the general population and replication in multinational case-control cohorts. Gut 64:1774–1782

    Article  CAS  PubMed  Google Scholar 

  22. El-Salhy M (2012) Irritable bowel syndrome: Diagnosis and pathogenesis. World J Gastroenterol 18:5151–5163

    Article  PubMed  PubMed Central  Google Scholar 

  23. El-Salhy M, Gilja OH, Gundersen D et al (2014) Duodenal Chromogranin A cell density as a Biomarker for the diagnosis of irritable bowel syndrome. Gastroenterol Res Pract 462856. doi:10.1155/2014/462856

  24. El-Salhy M, Hatlebakk JG, Gilja OH et al (2015) Densities of rectal peptide YY and somatostatin cells as biomarkers for the diagnosis of irritable bowel syndrome. Peptides 67:12–19

    Article  CAS  PubMed  Google Scholar 

  25. Gonlachanvit S, Mahayosnond A, Kullavanijaya P (2009) Effects of chili on postprandial gastrointestinal symptoms in diarrhoea predominant irritable bowel syndrome: Evidence for capsaicin-sensitive visceralnociception hypersensitivity. Neurogastroenterol Motil 21:23–32

    Article  CAS  PubMed  Google Scholar 

  26. Guarino MP, Barbara G, Cicenia A et al (2016) Supernatants of irritable bowel syndrome mucosal biopsies impair human colonic smooth muscle contractility. Neurogastroenterol Motil. doi:10.1111/nmo.12928

    Google Scholar 

  27. Gupta S (2016) Infectious disease: Something in the water. Nature 533:114–115

    Article  Google Scholar 

  28. Hammer J, Führer M, Pipal L et al (2008) Hypersensitivity for capsaicin in patients with functional dyspepsia. Neurogastroenterol Motil 20:125–133

    CAS  PubMed  Google Scholar 

  29. Hausken T, Berstad A (1992) Wide gastric antrum in patients with non-ulcer dyspepsia. Effect of cisapride. Scand J Gastroenterol 27:427–432

    Article  CAS  PubMed  Google Scholar 

  30. Henström M, Diekmann L, Bonfiglio F et al (2016) Functional variants in the sucrase-isomaltase gene associate with increased risk of irritable bowel syndrome. Gut. doi:10.1136/gutjnl-2016-312456

    Google Scholar 

  31. Hughes PA, Harrington AM, Castro J et al (2013) Sensory neuro-immune interactions differ between irritable bowel syndrome subtypes. Gut 62:1456–1465

    Article  CAS  PubMed  Google Scholar 

  32. Kourikou A, Karamanolis GP, Dimitriadis GD et al (2015) Gene polymorphisms associated with functional dyspepsia. World J Gastroenterol 21:7672–7682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lacy BE, Mearin F, Chang L et al (2016) Bowel disorders. Gastroenterology 150:1393–1407

    Article  Google Scholar 

  34. Larsson MH, Simren M, Thomas EA et al (2007) Elevated motility-related transmucosal potential difference in the upper small intestine in their irritable bowel syndrome. Neurogastroenterol Motil 19:812–820

    Article  CAS  PubMed  Google Scholar 

  35. Layer P, Andresen V, Pehl C, Allescher H, Bischoff SC, Classen M, Enck P, Frieling T, Haag S, Holtmann G, Karaus M, Kathemann S, Keller J, Kuhlbusch-Zicklam R, Kruis W, Langhorst J, Matthes H, Mönnikes H, Müller-Lissner S, Musial F, Otto B, Rosenberger C, Schemann M, van der Voort I, Dathe K, Preiss JC (2011) Irritable bowel syndrome: German consensus guidelines on definition, pathophysiology and management. Z Gastroenterol 49:237–293

    Article  CAS  PubMed  Google Scholar 

  36. Lee KJ, Tack J (2010) Duodenal Implications in the Pathophysiology of Functional Dyspepsia. J Neurogastroenterol Motil 16:251–257

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mayer EA, Gupta A, Kilpatrick LA et al (2015) Imaging brain mechanisms in chronic visceral pain. Pain 156:50–63

    Article  Google Scholar 

  38. Mearin F, Cucala M, Azpiroz F et al (1991) The origin of symptoms on the brain-gut axis in functional dyspepsia. Gastroenterology 101:999–1006

    Article  CAS  PubMed  Google Scholar 

  39. Mertz H, Naliboff B, Munakata J et al (1995) Altered rectal perception is a biological marker of patients with irritable bowel syndrome. Gastroenterology 109:40–52

    Article  CAS  PubMed  Google Scholar 

  40. Munakata J, Naliboff B, Harraf F et al (1997) Repetitive sigmoid stimulation induces rectal hyperalgesia in patients with irritable bowel syndrome. Gastroenterology 112:55–63

    Article  CAS  PubMed  Google Scholar 

  41. Ostertag D, Buhner S, Michel K et al (2015) Reduced responses of Submucous neurons from irritable bowel syndrome patients to a cocktail containing histamine, serotonin, TNFα, and Tryptase (IBS-cocktail). Front Neurosci 9:465

    Article  PubMed  PubMed Central  Google Scholar 

  42. Oustamanolakis P, Tack J (2012) Dyspepsia organic versus functional. J Clin Gastroenterol 46:175–190

    Article  PubMed  Google Scholar 

  43. Piche T, Barbara G, Aubert P et al (2009) Impaired intestinal barrier integrity in the colon of patients with irritable bowel syndrome: Involvement of soluble mediators. Gut 58:196–201

    Article  CAS  PubMed  Google Scholar 

  44. Pike BL, Paden KA, Alcala AN et al (2015) Immunological Biomarkers in Postinfectious irritable bowel syndrome. J Travel Med 22:242–250

    Article  PubMed  Google Scholar 

  45. Pilichiewicz AN, Feltrin KL, Horowitz M et al (2008) Functional dyspepsia is associated with a greater symptomatic response to fat but not carbohydrate, increased fasting and postprandial CCK, and diminished PYY. Am J Gastroenterol 103:2613–2623

    Article  CAS  PubMed  Google Scholar 

  46. Scanzi J, Accarie A, Muller E et al (2016) Colonic overexpression of the T‑type calcium channel Cav3.2 in a mouse model of visceral hypersensitivity and in irritable bowel syndrome patients. Neurogastroenterol Motil 28:1632–1640

    Article  CAS  PubMed  Google Scholar 

  47. Schemann M, Camilleri M (2013) Functions and imaging of mast cell and neural axis of the gut. Gastroenterology 144:698–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Serra J, Azpiroz F, Malagelada JR (1995) Perception and reflex responses to intestinal distention in humans are modified by simultaneous or previous stimulation. Gastroenterology 109:1742–1749

    Article  CAS  PubMed  Google Scholar 

  49. Spiller R, Lam C (2012) An update on post-infectious irritable bowel syndrome: role of genetics, immune activation, serotonin and altered Microbiome. J Neurogastroenterol Motil 18:258–268

    Article  PubMed  PubMed Central  Google Scholar 

  50. Stanghellini V, Chan F, Hasler WL et al (2016) Gastroduodenal disorders. Gastroenterology 150:1380–1392

    Article  PubMed  Google Scholar 

  51. Swan C, Duroudier NP, Campbell E et al (2013) Identifying and testing candidate genetic polymorphisms in the irritable bowel syndrome (IBS): Association with TNFSF15 and TNFα. Gut 62:985–994

    Article  CAS  PubMed  Google Scholar 

  52. Talley NJ, Ford AC (2015) Functional dyspepsia. N Engl J Med 373:1853–1863. doi:10.1056/NEJMra1501505

    Article  CAS  PubMed  Google Scholar 

  53. Tanaka F, Tominaga K, Fujikawa Y et al (2016) Concentration of Glial cell line-derived Neurotrophic factor positively correlates with symptoms in functional dyspepsia. Dig Dis Sci 61:3478–3485

    Article  CAS  PubMed  Google Scholar 

  54. van Wanrooij SJM, Wouters MM, Van Oudenhove L et al (2014) Sensitivity testing in Irritable Bowel Syndrome with rectal capsaicin stimulations: Role of TRPV1 upregulation and sensitization in visceral hypersensitivity. Am J Gastroenterol 109:99–109

    Article  PubMed  Google Scholar 

  55. Van Oudenhove L, Törnblom H, Störsrud S et al (2016) Depression and Somatization are associated with increased postprandial symptoms in patients with irritable bowel syndrome. Gastroenterology 150:866–874

    Article  PubMed  Google Scholar 

  56. Whitehead WE, Holtkotter B, Enck P et al (1990) Tolerance for rectosigmoid distention in irritable bowel syndrome. Gastroenterology 98:1187–1192

    Article  CAS  PubMed  Google Scholar 

  57. Witte AB, Walker MM, Talley NJ et al (2016) Decreased number of duodenal endocrine cells with unaltered serotonin-containing cells in functional dyspepsia. Am J Gastroenterol 111:1853–1854

    Article  Google Scholar 

  58. Wouters MM, Balemans D, Van Wanrooy S et al (2016) Histamine receptor H1-mediated sensitization of TRPV1 mediates visceral hypersensitivity and symptoms in patients with irritable bowel syndrome. Gastroenterology 150:875–887

    Article  CAS  PubMed  Google Scholar 

  59. Zhou Q, Zhang B, Verne GN (2009) Intestinal membrane permeability and hypersensitivityin the irritable bowel syndrome. Pain 146:41–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Danksagung

Der Autor bedankt sich bei der Deutschen Forschungsgemeinschaft für die kontinuierliche Förderung seiner Forschung seit dem Jahr 1988 und bei allen ehemaligen und aktuellen Mitarbeitern und Mitarbeiterinnen sowie den vielen nationalen und internationalen Kollaborationspartnern.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Schemann.

Ethics declarations

Interessenkonflikt

M. Schemann gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

M. Fried, Zürich

T. Frieling, Krefeld

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schemann, M. Reizdarm und Reizmagen – Pathophysiologie und Biomarker. Gastroenterologe 12, 114–129 (2017). https://doi.org/10.1007/s11377-017-0143-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11377-017-0143-7

Schlüsselwörter

Keywords

Navigation