Skip to main content

Advertisement

Log in

Comparison of trace elements in size-fractionated particles in two communities with contrasting socioeconomic status in Houston, TX

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Levels of ambient air pollutants, including particulate matter (PM), are often higher in low-socioeconomic status (SES) communities than in high-SES communities. Houston is the fourth largest city in the USA and is home to a large petrochemical industry, an active port, and congested roadways, which represent significant emission sources of air pollution in the region. To compare levels of air pollution between a low-SES and a high-SES community, we simultaneously collected a 7-day integrated size-fractionated PM between June 2013 and November 2013. We analyzed PM mass and elements for three particle size modes: quasi-ultrafine particles (quasi-UFP) (aerodynamic diameter <0.25 μm), accumulation mode particles (0.25–2.5 μm), and coarse mode particles (>2.5 μm). Concentrations of vanadium, nickel, manganese, and iron in the quasi-UFP mode were significantly higher in the low-SES community than in the high-SES community. In the accumulation and coarse modes, concentrations of crustal elements and barium were also significantly higher in the low-SES community compared to the high-SES community. These findings suggest that people living in the low-SES community may experience higher exposures to some toxic elements as compared to people in the high-SES community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amato, F., Viana, M., Richard, A., Furger, M., Prevot, A. S. H., Nava, S., et al. (2011). Size and time-resolved roadside enrichment of atmospheric particulate pollutants. Atmospheric Chemistry and Physics, 11(6), 2917–2931.

    Article  CAS  Google Scholar 

  • Arhami, M., Polidori, A., Delfino, R. J., Tjoa, T., & Sioutas, C. (2009). Associations between personal, indoor, and residential outdoor pollutant concentrations: implications for exposure assessment to size-fractionated particulate matter. Journal of the Air & Waste Management Association (1995), 59(4), 392–404.

    Article  CAS  Google Scholar 

  • Bell, M. L., & Ebisu, K. (2012). Environmental inequality in exposures to airborne particulate matter components in the United States. Environmental Health Perspectives, 120(12), 1699–1704. doi:10.1289/ehp.1205201.

    CAS  Google Scholar 

  • Bell, M. L., Ebisu, K., Peng, R. D., Samet, J. M., & Dominici, F. (2009). Hospital admissions and chemical composition of fine particle air pollution. American Journal of Respiratory and Critical Care Medicine, 179(12), 1115–1120. doi:10.1164/rccm.200808-1240OC.

    Article  CAS  Google Scholar 

  • Birmili, W., Allen, A. G., Bary, F., & Harrison, R. M. (2006). Trace metal concentrations and water solubility in size-fractionated atmospheric particles and influence of road traffic. Environmental Science & Technology, 40(4), 1144–1153.

    Article  CAS  Google Scholar 

  • Cahill, T. A., Barnes, D. E., Lawton, J. A., Miller, R., Spada, N., Willis, R. D., et al. (2016). Transition metals in coarse, fine, very fine and ultra-fine particles from an interstate highway transect near Detroit. [Article]. Atmospheric Environment, 145, 158–175. doi:10.1016/j.atmosenv.2016.09.023.

    Article  CAS  Google Scholar 

  • Daher, N., Hasheminassaba, S., Shafer, M. M., Schauer, J. J., & Sioutas, C. (2013). Seasonal and spatial variability in chemical composition and mass closure of ambient ultrafine particles in the megacity of Los Angeles. Environ Sci Process Impacts, 15(1), 283–295.

    Article  CAS  Google Scholar 

  • Fecht, D., Fischer, P., Fortunato, L., Hoek, G., de Hoogh, K., Marra, M., et al. (2015). Associations between air pollution and socioeconomic characteristics, ethnicity and age profile of neighbourhoods in England and the Netherlands. Environmental Pollution, 198, 201–210. doi:10.1016/j.envpol.2014.12.014.

    Article  CAS  Google Scholar 

  • Gao, Y., Nelson, E. D., Field, M. P., Ding, Q., Li, H., Sherrell, R. M., et al. (2002). Characterization of atmospheric trace elements on PM2.5 particulate matter over the New York-New Jersey harbor estuary. [Article]. Atmospheric Environment, 36(6), 1077–1086. doi:10.1016/S1352-2310(01)00381-8.

    Article  CAS  Google Scholar 

  • Gietl, J. K., Lawrence, R., Thorpe, A. J., & Harrison, R. M. (2010). Identification of brake wear particles and derivation of a quantitative tracer for brake dust at a major road. Atmospheric Environment, 44, 141–146.

    Article  CAS  Google Scholar 

  • Greater Houston Partnership (2015). 2015 Houston Facts. Greater Houston Partnership.

  • Hajat, A., Diez-Roux, A. V., Adar, S. D., Auchincloss, A. H., Lovasi, G. S., O’Neill, M. S., et al. (2013). Air pollution and individual and neighborhood socioeconomic status: evidence from the Multi-Ethnic Study of Atherosclerosis (MESA). Environmental Health Perspectives, 121(11–12), 1325–1333. doi:10.1289/ehp.1206337.

    Google Scholar 

  • Han, I., Mihalic, J. N., Ramos-Bonilla, J. P., Rule, A. M., Polyak, L. M., Peng, R. D., et al. (2012). Assessment of heterogeneity of metal composition of fine particulate matter collected from eight US counties using principal component analysis. Journal of the Air & Waste Management Association, 62(7), 773–782.

    Article  Google Scholar 

  • Harrison, R. M., Beddows, D. C., & Dall’Osto, M. (2011). PMF analysis of wide-range particle size spectra collected on a major highway. Environmental Science & Technology, 45(13), 5522–5528. doi:10.1021/es2006622.

    Article  CAS  Google Scholar 

  • Harrison, R. M., Jones, A. M., Gietl, J., Yin, J., & Green, D. C. (2012). Estimation of the contributions of brake dust, tire wear, and resuspension to nonexhaust traffic particles derived from atmospheric measurements. Environmental Science & Technology, 46(12), 6523–6529. doi:10.1021/es300894r.

    Article  CAS  Google Scholar 

  • Hoek, G., Krishnan, R. M., Beelen, R., Peters, A., Ostro, B., Brunekreef, B., et al. (2013). Long-term air pollution exposure and cardio- respiratory mortality: a review. Environmental Health, 12(1), 43. doi:10.1186/1476-069X-12-43.

    Article  CAS  Google Scholar 

  • Ito, K., Johnson, S., Kheirbek, I., Clougherty, J., Pezeshki, G., Ross, Z., et al. (2016). Intraurban variation of fine particle elemental concentrations in New York City. [Article]. Environmental Science and Technology, 50(14), 7517–7526. doi:10.1021/acs.est.6b00599.

    Article  CAS  Google Scholar 

  • Jones, M. R., Diez-Roux, A. V., Hajat, A., Kershaw, K. N., O’Neill, M. S., Guallar, E., et al. (2014). Race/ethnicity, residential segregation, and exposure to ambient air pollution: the Multi-Ethnic Study of Atherosclerosis (MESA). American Journal of Public Health, 104(11), 2130–2137. doi:10.2105/AJPH.2014.302135.

    Article  Google Scholar 

  • Jung, K. H., Bernabe, K., Moors, K., Yan, B., Chillrud, S. N., Whyatt, R., et al. (2011). Effects of floor level and building type on residential levels of outdoor and indoor polycyclic aromatic hydrocarbons, black carbons, and particulate matter in New York City. Atmosphere, 2, 96–109.

    Article  CAS  Google Scholar 

  • Karnae, S., & John, K. (2011). Source apportionment of fine particulate matter measured in an industrialized coastal urban area of South Texas. Atmospheric Environment (1994), 45, 3769–3776.

  • Kim, M. K., & Jo, W. K. (2006). Elemental composition and source characterization of airborne PM10 at residences with relative proximities to metal-industrial complex. [Article]. International Archives of Occupational and Environmental Health, 80(1), 40–50. doi:10.1007/s00420-006-0102-y.

    Article  CAS  Google Scholar 

  • Kleeman, M. J., Riddle, S. G., & Jakober, C. A. (2008). Size distribution of particle-phase molecular markers during a severe winter pollution episode. Environmental Science & Technology, 42(17), 6469–6475.

    Article  CAS  Google Scholar 

  • Kleeman, M. J., Riddle, S. G., Robert, M. A., Jakober, C. A., Fine, P. M., Hays, M. D., et al. (2009). Source apportionment of fine (PM1.8) and ultrafine (PM0.1) airborne particulate matter during a severe winter pollution episode. Environmental Science & Technology, 43(2), 272–279.

    Article  CAS  Google Scholar 

  • Kohlhuber, M., Mielck, A., Weiland, S. K., & Bolte, G. (2006). Social inequality in perceived environmental exposures in relation to housing conditions in Germany. Environmental Research, 101(2), 246–255. doi:10.1016/j.envres.2005.09.008.

    Article  CAS  Google Scholar 

  • Krudysz, M., Moore, K., Geller, M., Sioutas, C., & Froines, J. (2009). Intra-community spatial variability of particulate matter size distributions in Southern California/ Los Angeles. Atmospheric Chemistry and Physics, 9, 1061–1075.

    Article  CAS  Google Scholar 

  • Minguillon, M. C., Arhami, M., Schauer, J., & Sioutas, C. (2008). Seasonal and spatial variations of sources of fine and quasi-ultrafine particulate matter in neighborhoods near the Los Angeles-Long Beach harbor. Atmospheric Environment, 42, 7317–7328.

    Article  CAS  Google Scholar 

  • Miranda, M. L., Edwards, S. E., Keating, M. H., & Paul, C. J. (2011). Making the environmental justice grade: the relative burden of air pollution exposure in the United States. International Journal of Environmental Research and Public Health, 8(6), 1755–1771. doi:10.3390/ijerph8061755.

    Article  Google Scholar 

  • Oakes, M. M., Burke, J. M., Norris, G. A., Kovalcik, K. D., Pancras, J. P., & Landis, M. S. (2016). Near-road enhancement and solubility of fine and coarse particulate matter trace elements near a major interstate in Detroit, Michigan. [Article]. Atmospheric Environment, 145, 213–224. doi:10.1016/j.atmosenv.2016.09.034.

    Article  CAS  Google Scholar 

  • Pandolfi, M., Gonzalez-Castanedo, Y., Alastuey, A., de la Rosa, J. D., Mantilla, E., de la Campa, A. S., et al. (2011). Source apportionment of PM(10) and PM(2.5) at multiple sites in the strait of Gibraltar by PMF: impact of shipping emissions. Environmental Science and Pollution Research International, 18(2), 260–269. doi:10.1007/s11356-010-0373-4.

    Article  CAS  Google Scholar 

  • Peng, R. D., Bell, M. L., Geyh, A. S., McDermott, A., Zeger, S. L., Samet, J. M., et al. (2009). Emergency admissions for cardiovascular and respiratory diseases and the chemical composition of fine particle air pollution. Environmental Health Perspectives, 117(6), 957–963. doi:10.1289/ehp.0800185.

    Article  CAS  Google Scholar 

  • Peng, R. D., Chang, H. H., Bell, M. L., McDermott, A., Zeger, S. L., Samet, J. M., et al. (2008). Coarse particulate matter air pollution and hospital admissions for cardiovascular and respiratory diseases among Medicare patients. JAMA, 299(18), 2172–2179. doi:10.1001/jama.299.18.2172.

    Article  CAS  Google Scholar 

  • Perlin, S. A., Wong, D., & Sexton, K. (2001). Residential proximity to industrial sources of air pollution: interrelationships among race, poverty, and age. Journal of the Air & Waste Management Association (1995), 51(3), 406–421.

    Article  CAS  Google Scholar 

  • Pey, J., Perez, N., Cortes, J., Alastuey, A., & Querol, X. (2013). Chemical fingerprint and impact of shipping emissions over a western Mediterranean metropolis: primary and aged contributions. The Science of the Total Environment, 463-464, 497–507. doi:10.1016/j.scitotenv.2013.06.061.

    Article  CAS  Google Scholar 

  • Saffari, A., Daher, N., Shafer, M. M., Schauer, J. J., & Sioutas, C. (2013). Seasonal and spatial variation of trace elements and metals in quasi-ultrafine (PM0.25) particles in the Los Angeles metropolitan area and characterization of their sources. Environmental Pollution, 181, 14–23. doi:10.1016/j.envpol.2013.06.001.

    Article  CAS  Google Scholar 

  • Sioutas, C., Delfino, R. J., & Singh, M. (2005). Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research. Environmental Health Perspectives, 113(8), 947–955.

    Article  Google Scholar 

  • Song, F., & Gao, Y. (2011). Size distributions of trace elements associated with ambient particular matter in the affinity of a major highway in the New Jersey-New York metropolitan area. [Article]. Atmospheric Environment, 45(37), 6714–6723. doi:10.1016/j.atmosenv.2011.08.031.

    Article  CAS  Google Scholar 

  • Texas A&M Transportation Institute. (2015). 2015 urban mobility scorecard. TX: College Station.

    Google Scholar 

  • Thorpe, A., & Harrison, R. M. (2008). Sources and properties of non-exhaust particulate matter from road traffic: a review. The Science of the Total Environment, 400(1–3), 270–282. doi:10.1016/j.scitotenv.2008.06.007.

    Article  CAS  Google Scholar 

  • Thurston, G. D., Ito, K., & Lall, R. (2011). A source apportionment of U.S. fine particulate matter air pollution. Atmos Environ (1994), 45(24), 3924–3936. doi:10.1016/j.atmosenv.2011.04.070.

    Article  CAS  Google Scholar 

  • US Census Bureau (2010). Quick facts: Houston, Texas 2010. http://www.census.gov/quickfacts/table/PST045214/4835000,00. Accessed December 15 2015.

  • van der Gon, H. A., Gerlofs-Nijland, M. E., Gehrig, R., Gustafsson, M., Janssen, N., Harrison, R. M., et al. (2013). The policy relevance of wear emissions from road transport, now and in the future—an international workshop report and consensus statement. Journal of the Air & Waste Management Association (1995), 63(2), 136–149.

    Article  Google Scholar 

  • Viana, M., Rivas, I., Querol, X., Alastuey, A., Álvarez-Pedrerol, M., Bouso, L., Sioutas, C., & Sunyer, J. (2015). Partitioning of trace elements and metals between quasi-ultrafine, accumulation and coarse aerosols in indoor and outdoor air in schools. Atmospheric Environment (1994), 106, 392–401.

  • Wilson, J. G., Kingham, S., Pearce, J., & Sturman, A. P. (2005). A review of intraurban variations in particulate air pollution: implications for epidemiological research. Atmospheric Environment, 39, 6444–6462.

    Article  CAS  Google Scholar 

  • Wing, S., Horton, R. A., Muhammad, N., Grant, G. R., Tajik, M., & Thu, K. (2008). Integrating epidemiology, education, and organizing for environmental justice: community health effects of industrial hog operations. American Journal of Public Health, 98(8), 1390–1397. doi:10.2105/AJPH.2007.110486.

    Article  Google Scholar 

  • Wu, C. F., Lin, H. I., Ho, C. C., Yang, T. H., Chen, C. C., & Chan, C. C. (2014). Modeling horizontal and vertical variation in intraurban exposure to PM2.5 concentrations and compositions. Environmental Research, 133, 96–102. doi:10.1016/j.envres.2014.04.038.

    Article  CAS  Google Scholar 

  • Zhou, J., Ito, K., Lall, R., Lippmann, M., & Thurston, G. (2011). Time-series analysis of mortality effects of fine particulate matter components in Detroit and Seattle. Environmental Health Perspectives, 119(4), 461–466. doi:10.1289/ehp.1002613.

    Article  CAS  Google Scholar 

  • Zhu, X., Fan, Z. T., Wu, X., Jung, K. H., Ohman-Strickland, P., Bonanno, L. J., et al. (2011). Ambient concentrations and personal exposure to polycyclic aromatic hydrocarbons (PAH) in an urban community with mixed sources of air pollution. Journal of Exposure Science & Environmental Epidemiology, 21(5), 437–449. doi:10.1038/jes.2011.2.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the CDC/NIOSH 2T42OH008421 and the Office of the Dean, University of Texas Health Science Center at Houston (UTHealth) School of Public Health, Houston, TX. We would like to thank Dr. Wei-Yeong Wang and Nepal Ramesh of the Bureau of Pollution Control and Prevention in the Houston Health Department for access to the air sampling site located in Clinton Drive, Houston, TX, between June 2013 and November 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inkyu Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, I., Guo, Y., Afshar, M. et al. Comparison of trace elements in size-fractionated particles in two communities with contrasting socioeconomic status in Houston, TX. Environ Monit Assess 189, 67 (2017). https://doi.org/10.1007/s10661-017-5780-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5780-2

Keywords

Navigation