Skip to main content
Log in

Enhanced optical absorption in semiconductor nanoparticles enabled by nearfield dielectric scattering

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The optical absorption of semiconducting AgBr nanocubes is significantly increased by up to 5 times in the measured spectral range when they are bonded to the surface of dielectric SiO2 nanospheres through electrostatic interaction. The absorption enhancement factor depends on the wavelength and the size of the SiO2 nanoparticles (NPs). Finite-difference time-domain calculations provide the nearfield intensity mapping of a heterostructure that is composed of a AgBr nanocube in close contact with a SiO2 nanosphere. The electric-field distributions indicate the field enhancement near the SiO2/AgBr interface due to light scattering and absorption enhancement in the AgBr nanocube, implying that the enhanced scattering nearfield increases the absorption cross section of the AgBr nanocube. The absorption cross-section spectra calculated using Mie theory agree with the experimental observations. This discovery sheds light on the utilization of dielectric spherical particles to increase the absorption in semiconductor NPs, thus improving the light-harvesting efficiency for solar-energy conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344.

    Article  Google Scholar 

  2. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455–459.

    Article  Google Scholar 

  3. Kamat, P. V.; Tvrdy, K.; Baker, D. R.; Radich, J. G. Beyond photovoltaics: Semiconductor nanoarchitectures for liquid-junction solar cells. Chem. Rev. 2010, 110, 6664–6688.

    Article  Google Scholar 

  4. Beard, M. C.; Luther, J. M.; Semonin, O. E.; Nozik, A. J. Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors. Acc. Chem. Res. 2013, 46, 1252–1260.

    Article  Google Scholar 

  5. Bai, Y.; Mora-Seró, I.; De Angelis, F.; Bisquert, J.; Wang, P. Titanium dioxide nanomaterials for photovoltaic applications. Chem. Rev. 2014, 114, 10095–10130.

    Article  Google Scholar 

  6. Carey, G. H.; Abdelhady, A. L.; Ning, Z. J.; Thon, S. M.; Bakr, O. M.; Sargent, E. H. Colloidal quantum dot solar cells. Chem. Rev. 2015, 115, 12732–12763.

    Article  Google Scholar 

  7. Hoffmann, M. R.; Martin, S. T.; Choi, W; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96.

    Article  Google Scholar 

  8. Liu, Y. X.; Shi, J. X.; Peng, Q.; Li, Y. D. CuO quantumdot- sensitized mesoporous ZnO for visible-light photocatalysis. Chem.—Eur. J. 2013, 19, 4319–4326.

    Article  Google Scholar 

  9. Li, Z.; Hu, Y. X.; Sun, Y. G. Promoting photocatalytic multiple-electron reduction in aerobic solutions using Autipped CdSe nanorod clusters. Chem. Commun. 2014, 50, 1411–1413.

    Article  Google Scholar 

  10. Chen, Y. G.; Zhao, S.; Wang, X.; Peng, Q.; Lin, R.; Wang, Y.; Shen, R. A.; Cao, X.; Zhang, L. B.; Zhou, G. et al. Synergetic integration of Cu1.94S–ZnxCd1–x S heteronanorods for enhanced visible-light-driven photocatalytic hydrogen production. J. Am. Chem. Soc. 2016, 138, 4286–4289.

    Article  Google Scholar 

  11. Rasamani, K. D.; Li, Z.; Sun, Y. Significant enhancement of photocatalytic water splitting enabled by elimination of surface traps in Pt-tipped CdSe nanorods. Nanoscale 2016, 8, 18621–18625.

    Article  Google Scholar 

  12. Li, X.; Yu, J. G.; Jaroniec, M. Hierarchical photocatalysts. Chem. Soc. Rev. 2016, 45, 2603–2636.

    Article  Google Scholar 

  13. Regulacio, M. D.; Han, M. Y. Multinary I-III-VI2 and I2-II-IV-VI4 semiconductor nanostructures for photocatalytic applications. Acc. Chem. Res. 2016, 49, 511–519.

    Article  Google Scholar 

  14. Sajan, C. P.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. G.; Cao, S. W. TiO2 nanosheets with exposed {001} facets for photocatalytic applications. Nano Res. 2016, 9, 3–27.

    Article  Google Scholar 

  15. Leatherdale, C. A.; Woo, W. K.; Mikulec, F. V.; Bawendi, M. G. On the absorption cross section of CdSe nanocrystal quantum dots. J. Phys. Chem. B 2002, 106, 7619–7622.

    Article  Google Scholar 

  16. Feng, N. N.; Michel; J., Zeng; L. R., Liu, J. F.; Hong, C. Y.; Kimerling, L. C.; Duan, X. M. Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells. IEEE Trans. Electron Dev. 2007, 54, 1926–1933.

    Article  Google Scholar 

  17. Yoon, J.; Baca, A. J.; Park, S. I.; Elvikis, P.; Geddes, J. B., III; Li, L. F.; Kim, R. H.; Xiao, J. L.; Wang, S. D.; Kim, T. H. et al. Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat. Mater. 2008, 7, 907–915.

    Article  Google Scholar 

  18. Zheng, Y. Z.; Tao, X.; Wang, L. X.; Xu, H.; Hou, Q.; Zhou, W. L.; Chen, J. F. Novel ZnO-based film with double light-scattering layers as photoelectrodes for enhanced efficiency in dye-sensitized solar cells. Chem. Mater. 2010, 22, 928–934.

    Article  Google Scholar 

  19. Son, S.; Hwang, S. H.; Kim, C.; Yun, J. Y.; Jang, J. Designed synthesis of SiO2/TiO2 core/shell structure as light scattering material for highly efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2013, 5, 4815–4820.

    Article  Google Scholar 

  20. Ullah, S.; Ferreira-Neto, E. P.; Pasa, A. A.; Alcâ ntara, C. C. J.; Acuñ a, J. J. S.; Bilmes, S. A.; Ricci, M. L. M.; Landers, R.; Fermino, T. Z.; Rodrigues-Filho, U. P. Enhanced photocatalytic properties of core@shell SiO2@TiO2 nanoparticles. Appl. Catal. B: Environ. 2015, 179, 333–343.

    Article  Google Scholar 

  21. Linic, S.; Christopher, P; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911–921.

    Article  Google Scholar 

  22. Seh, Z. W.; Liu, S. H.; Low, M.; Zhang, S. Y.; Liu, Z. L.; Mlayah, A.; Han, M. Y. Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Adv. Mater. 2012, 24, 2310–2314.

    Article  Google Scholar 

  23. Hou, W. B.; Cronin, S. B. A review of surface plasmon resonance-enhanced photocatalysis. Adv. Funct. Mater. 2013, 23, 1612–1619.

    Article  Google Scholar 

  24. Yun, J.; Hwang, S. H.; Jang, J. Fabrication of Au@Ag core/shell nanoparticles decorated TiO2 hollow structure for efficient light-harvesting in dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2015, 7, 2055–2063.

    Article  Google Scholar 

  25. Choi, Y.; Kim, H. I.; Moon, G. H.; Jo, S.; Choi, W. Boosting up the Low catalytic activity of silver for H2 production on Ag/TiO2 photocatalyst: Thiocyanate as a selective modifier. ACS Catal. 2016, 6, 821–828.

    Article  Google Scholar 

  26. Zhang, J. M.; Jin, X.; Morales-Guzman, P. I.; Yu, X.; Liu, H.; Zhang, H.; Razzari, L.; Claverie, J. P. Engineering the absorption and field enhancement properties of Au–TiO2 nanohybrids via whispering gallery mode resonances for photocatalytic water splitting. ACS Nano 2016, 10, 4496–4503.

    Article  Google Scholar 

  27. Zhang, N.; Han, C.; Xu, Y. J.; Foley, J. J. Zhang, D. T.; Codrington, J.; Gray, S. K.; Sun, Y. G. Near-field dielectric scattering promotes optical absorption by platinum nanoparticles. Nat. Photonics 2016, 10, 473–482.

    Article  Google Scholar 

  28. Glaus, S.; Calzaferri, G. The band structures of the silver halides AgF, AgCl, and AgBr: A comparative study. Photochem. Photobiol. Sci. 2003, 2, 398–401.

    Article  Google Scholar 

  29. Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69.

    Article  Google Scholar 

  30. Zhang, J. H.; Zhan, P.; Wang, Z. L.; Zhang, W. Y.; Ming, N. B. Preparation of monodisperse silica particles with controllable size and shape. J. Mater. Res. 2003, 18, 649–653.

    Article  Google Scholar 

  31. Sousa-Castillo, A.; Comesaña-Hermo, M.; Rodríguez-González, B.; Pérez-Lorenzo, M.; Wang, Z. M.; Kong, X. T.; Govorov, A. O.; Correa-Duarte, M. A. Boosting hot electron-driven photocatalysis through anisotropic plasmonic nanoparticles with hot spots in Au–TiO2 nanoarchitectures. J. Phys. Chem. C 2016, 120, 11690–11699.

    Article  Google Scholar 

  32. Li, Z.; Okasinski, J. S.; Gosztola, D. J.; Ren, Y.; Sun, Y. G. Silver chlorobromide nanocubes with significantly improved uniformity: Synthesis and assembly into photonic crystals. J. Mater. Chem. C 2015, 3, 58–65.

    Article  Google Scholar 

  33. Bohren, C. F.; Huffman, D. R. Absorption and scattering by a sphere. In Absorption and Scattering of Light by Small Particles; John Wiley & Sons: New York, 1983; pp 82–129.

    Google Scholar 

  34. Li, Z.; Gosztola, D. J.; Sun, C. J.; Heald, S. M.; Sun, Y. G. Exceptional enhancement of Raman scattering on silver chlorobromide nanocube photonic crystals: Chemical and photonic contributions. J. Mater. Chem. C 2015, 3, 2455–2461.

    Article  Google Scholar 

  35. Brunauer, S.; Deming, L. S.; Deming, W. E.; Teller, E. On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 1940, 62, 1723–1732.

    Article  Google Scholar 

Download references

Acknowledgements

Y. G. S. gratefully acknowledges start-up funds from Temple University. J. J. F. gratefully acknowledges start-up funds from the College of Science and Health and the Department of Chemistry at William Paterson University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yugang Sun.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasamani, K.D., Foley, J.J., Beidelman, B. et al. Enhanced optical absorption in semiconductor nanoparticles enabled by nearfield dielectric scattering. Nano Res. 10, 1292–1301 (2017). https://doi.org/10.1007/s12274-016-1406-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1406-1

Keywords

Navigation