Skip to main content
Log in

Structure and transport properties of pervaporation membranes based on polyphenylene oxide and heteroarm star polymers

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Thin-film membranes based on polyphenylene oxide composites with a varying concentration of heteroarm star-shaped polymers (1, 3, and 5 wt %) comprising arms of polystyrene and poly(2-vinylpyridine)- block-poly(tert-butylmethacrylate) diblock copolymer grafted onto a common fullerene C60 core have been developed. The transport properties of the membranes have been studied in the pervaporation separation of a methanol–ethylene glycol mixture. An increase in the star-shaped polymer content in the membrane leads to an increase in the flux and separation factor of the membranes. Sorption studies have revealed that the sorption activity of methanol in the membranes is higher than that of ethylene glycol. The introduction of star-shaped polymer additives into the membrane composition leads to an increase in the degree of equilibrium sorption of the two components of the mixture subjected to separation. The formation of transport channels in pervaporation membranes during sorption in deuterated methanol has been first studied using the small-angle neutron scattering method. Comparative analysis of the data on neutron scattering on the original dry samples, the samples saturated with deuterated methanol, and the samples dried after sorption has shown that the structural uniformity of the composite membranes is higher than that of the matrix polymer. According to scanning electron microscopy, the morphology of the composite membranes is a system of closed cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Volkov, B. V. Mchedlishvili, V. I. Roldugin, et al., Membr. Nanotekhnol. 3 (11), 21 (2008).

    Google Scholar 

  2. Membranes and Membrane Technologies, Ed. by A. B. Yaroslavtsev (Nauchnyi Mir, Moscow, 2013) [in Russian].

  3. K. O. Vishnevskii, A. Yu. Grebenyuk, O. I. Karasev, et al., Forecast of Scientific and Technological Development of Russia: 2030, Ed. by L. M. Gokhberg (Vysshaya Shkola Ekonomiki, Moscow, 2014), ch. 4, p. 111 [in Russian].

  4. C.-T. Wu, K. M. K. Yu, F. Liao, et al., Nat. Commun, No. 3, 1050 (2012).

    Article  Google Scholar 

  5. I. Ghosh, S. K. Sanyal, and R. N. Mukherjea, Ind. Eng. Chem. Res. 28, 757 (1989).

    Article  CAS  Google Scholar 

  6. S. K. Ray, S. B. Sawant, J. B. Joshi, and V. G. Pangarkar, J. Membr. Sci. 154, 1 (1999).

    Article  CAS  Google Scholar 

  7. M. Khayet, J. P. G. Villaluenga, M. P. Godino, et al., J. Colloid. Interface Sci. 278, 410 (2004).

    Article  CAS  Google Scholar 

  8. J. M. Hawkins, A. Meyer, T. A. Lewis, et al., Science 252, 312 (1991).

    Article  CAS  Google Scholar 

  9. V. I. Vasil’eva, L. A. Bityutskaya, N. A. Zaichenko, et al., Sorbt. Khromatogr. Protsessy 8, 260 (2008).

    Google Scholar 

  10. G. Gebel and J. Lambard, Macromolecules 30, 7914 (1997).

    Article  CAS  Google Scholar 

  11. S. K. Young, S. F. Trevino, and N. C. B. Tan, J. Polym. Sci., Part B: Polym Phys. 40, 387 (2002).

    Article  CAS  Google Scholar 

  12. G. Gebel, O. Oliver, and C. Stone, J. New. Mater. Electrochem. Syst. 6, 17 (2003).

    CAS  Google Scholar 

  13. K. Schmidt-Rohr and Q. Chen, Nat. Mater. 7, 75 (2008).

    Article  CAS  Google Scholar 

  14. G. C. Sanjay, H. R. Bhavika, and S. S. Puyam, RSC Adv. 5, 65862 (2015).

    Article  Google Scholar 

  15. G. Bouglet and C. Ligoure, Eur. Phys. J. 9, 137 (1999).

    Article  CAS  Google Scholar 

  16. I. Krakovsky' and N. K. Székely, J. Non-Cryst. Solids 356, 368 (2010).

    Article  Google Scholar 

  17. I. Krakovsky' and N. K. Székely, Eur. Polym. J. 47, 2177 (2011).

    Article  Google Scholar 

  18. Polymer Blends, Ed. By D. R. Paul and S. Newman (Academic, New York, 1978), Vol. 1.

  19. D. Voulgaris, C. Tsitsilianis, F. J. Esselink, and G. Hadzioannou, Polymer 39, 6429 (1998).

    Article  CAS  Google Scholar 

  20. D. Voulgaris, C. Tsitsilianis, V. Grayer, et al., Polymer 40, 5879 (1999).

    Article  CAS  Google Scholar 

  21. C. Tsitsilianis, D. Voulgaris, M. Stepanek, et al., Langmuir 16, 6868 (2000).

    Article  CAS  Google Scholar 

  22. D. Voulgaris and C. Tsitsilianis, Macromol. Chem. Phys. 202, 3284 (2001).

    Article  CAS  Google Scholar 

  23. S. Okamoto, H. Hasegawa, T. Hashimoto, et al., Polymer 38, 5275 (1997).

    Article  CAS  Google Scholar 

  24. F. L. Beyer, S. P. Gido, D. Uhrig, et al., J. Polym. Sci., Part B: Polym. Phys. 37, 3392 (1999).

    Article  CAS  Google Scholar 

  25. H. Hueckstaed, A. Goepfert, and V. Abetz, Macromol. Chem. Phys. 201, 296 (2000).

    Article  Google Scholar 

  26. K. Yamauchi, K. Takahashi, H. Hasegawa, et al., Macromolecules 36, 6962 (2003).

    Article  CAS  Google Scholar 

  27. A. Mavroudis, A. Avgeropoulos, N. Hadjichristidis, et al., Chem. Mater. 15, 1976 (2003).

    Article  CAS  Google Scholar 

  28. V. T. Lebedev, Gy. Török, and L. V. Vinogradova, Polym. Sci., Ser. A 53, 12 (2011).

    Article  CAS  Google Scholar 

  29. T. H. Baker, G. T. Fisher, and J. A. Roth, J. Chem. Eng. Data 9, 11 (1964).

    Article  CAS  Google Scholar 

  30. A. F. M. Barton, CRC Handbook of Solubility Parameters and Other Cohesion Parameters, 2nd Ed. (CRC, Boca Raton, FL, 1991).

    Google Scholar 

  31. A. Penkova, G. Polotskaya, and A. Toikka, Chem. Eng. Process. 87, 81 (2015).

    Article  CAS  Google Scholar 

  32. G. A. Polotskaya, E. L. Krasnopeeva, and L. V. Vinogradova, RU Patent No. 2 543 203 (2015).

  33. H. C. Benoit, J. Polym. Sci. Lett. Ed. 11, 507 (1953).

    Article  CAS  Google Scholar 

  34. D. I. Svergun and L. A. Feigin, Small-Angle X-ray and Neutron Scattering (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  35. D. I. Svergun, J. Cryst. 25, 495 (1992).

    Article  Google Scholar 

  36. G. A. Polotskaya, E. L. Krasnopeeva, L. M. Kalyuzhnaya, et al., Sep. Purif. Technol. 143, 192 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Polotskaya.

Additional information

Original Russian Text © G.A. Polotskaya, V.T. Lebedev, A.Yu. Pulyalina, L.V. Vinogradova, 2016, published in Membrany i Membrannye Tekhnologii, 2016, Vol. 6, No. 3, pp. 249–261.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polotskaya, G.A., Lebedev, V.T., Pulyalina, A.Y. et al. Structure and transport properties of pervaporation membranes based on polyphenylene oxide and heteroarm star polymers. Pet. Chem. 56, 920–930 (2016). https://doi.org/10.1134/S0965544116100091

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544116100091

Keywords

Navigation