Skip to main content
Log in

Model order reduction for dynamic simulation of slender beams undergoing large rotations

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper a model order reduction technique for the dynamic simulation of beams undergoing large rotations is presented. The finite element model for the motion of such beams is based on the corotational formulation. The trajectory piecewise linear model order reduction (TPWLMOR) method with second order Krylov subspace is used to obtain the reduced order model from the finite element model. Improvements are suggested to improve the accuracy and the computational efficiency of the TPWLMOR model. Several numerical examples which include forced undamped and damped beams are presented to validate the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Antoulas A (2005) Approximation of large scale dynamical systems. SIAM, Philadelphia

  2. Argyris J (1982) An excursion into large rotations. Comput Method Appl Mech 32(3):85–155

    Article  MathSciNet  MATH  Google Scholar 

  3. Bai Z (2002) Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems. Appl Numer Math 43(1–2):9–44

    Article  MathSciNet  MATH  Google Scholar 

  4. Bai Z, Yangfeng SU (2005) Dimension reduction of large-scale second-order dynamical systems via a second-order arnoldi method. SIAM J Sci Comput 26(5):1692–1709

    Article  MathSciNet  MATH  Google Scholar 

  5. Barbic J, James D (2005) Real-time subspace integration for St. Venant-kirchhoff deformable models. ACM Tran Graph (SIGGRAPH 2005) 24(3):982–990

  6. Bathe KJ (2007) Conserving energy and momentum in nonlinear dynamics: a simple implicit time integration scheme. Comput Struct 85(7–8):437–445

    Article  MathSciNet  Google Scholar 

  7. Bathe KJ (2009) Finite element procedures. Phi Learning, New Delhi

    MATH  Google Scholar 

  8. Bathe KJ, Baig MMI (2005) On a composite implicit time integration procedure for nonlinear dynamics. Comput Struct 83(31–32):2513–2524

    Article  MathSciNet  Google Scholar 

  9. Bathe KJ, Noh G (2012) Insight into an implicit time integration scheme for structural dynamics. Comput Struct 98–99:1–6

    Article  Google Scholar 

  10. Behdinan K, Stylianou MC, Tabarrok B (1998) Co-rotational dynamic analysis of flexible beams. Comput Method Appl Mech 154(1):151–161

    Article  MATH  Google Scholar 

  11. Chen J, Kang SM, Zou J, Liu C, Schutt-Ainé JE (2004) Reduced-order modeling of weakly nonlinear mems devices with taylor-series expansion and arnoldi approach. J Microelectromech Syst 13(3):441–451

    Article  Google Scholar 

  12. Craig RR Jr (2002) Krylov–lanczos methods. Encycl Vib 2:691–698

    Google Scholar 

  13. Crisfield M (1990) A consistant co-rotational formulation for non-linear, three-dimensional, beam elements. Comput Method Appl Mech 81(3):131–150

    Article  MATH  Google Scholar 

  14. Crisfield M (1991) Non-linear finite element analysis of solids and structures. Wiley, New York

    MATH  Google Scholar 

  15. Crisfield M, Galvanetto U, Jelenic G (1997) Dynamics of 3-D co-rotational beams. Comput Mech 20(3):507–519

    Article  MATH  Google Scholar 

  16. Escalona J, Hussien H, Shabana A (1998) Application of the absolute nodal co-ordinate formulation to multibody system dynamics. J Sound Vib 214(5):833–851

    Article  Google Scholar 

  17. Geradin M, Cordona A (1989) Kinematics and dynamics of rigid and flexible mechanisms using finite elements and quaternion algebra. Comput Mech 4(3):115–136

    Google Scholar 

  18. Hasiao K, Jang J (1991) Dynamic analysis of planar flexible mechanisms by co-rotational formulation. Comput Method Appl Mech 87(3):1–14

    Article  MATH  Google Scholar 

  19. Hilber HM, Hughes TJR, Taylor RL (1977) Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq Eng Struct Dyn 5(3):283–292

    Article  Google Scholar 

  20. Idelsohn SR, Cardona A (1985a) A load-dependent basis for reduced nonlinear structural dynamics. Comput Struct 20(1–3):203–210

    Article  MATH  Google Scholar 

  21. Idelsohn SR, Cardona A (1985b) A reduction method for nonlinear structural dynamic analysis. Comput Method Appl Mech 49(3):253–279

    Article  MATH  Google Scholar 

  22. Iura M, Iwakuma T (1995) Dynamic analysis of planar timoshenko beam with finite displacement. Comput Struct 45(1):173–179

    Article  Google Scholar 

  23. Kosambi D (1943) Statistics in function space. J Indian Math Soc 7:76–78

    MathSciNet  MATH  Google Scholar 

  24. Krysl P, Lall S, Marsden J (2001) Dimensional model reduction in non-linear finite element dynamics of solids and structures. Int J Numer Methods Eng 51(4):479–504

    Article  MathSciNet  MATH  Google Scholar 

  25. Le T, Battini J, Hijaj M (2011) Efficient formulation for dynamics of corotational 2D beams. Comput Mech 48(3):153–161

    Article  MathSciNet  MATH  Google Scholar 

  26. Nickell RE (1976) Nonlinear dynamics by mode superposition. Comput Method Appl Mech 7(1):107–129

    Article  MathSciNet  MATH  Google Scholar 

  27. Nour-Omid B, Rankin C (1991) Finite rotation analysis and consistent linearization using projectors. Comput Method Appl Mech 93(3):353–384

    Article  MATH  Google Scholar 

  28. Phillips JR (2003) Projection-based approaches for model reduction of weakly nonlinear time-varying systems. IEEE Trans Comput Aid Des 22(2):171–187

    Article  Google Scholar 

  29. Rankin C, Brogan F (1986) An element independent corotational procedure for the treatment of large rotations. J Pressure Vessel Technol ASME 108(3):165–174

    Article  Google Scholar 

  30. Rewienski M, White J (2003) A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices. IEEE Trans Comput Aid Des 22(2):155–170

    Article  Google Scholar 

  31. Shabana A (1997) Flexible multibody dynamics: review of past and recent developments. Multibody Syst Dyn 1:189–222

    Article  MathSciNet  MATH  Google Scholar 

  32. Shabana A (2005) Dynamics of multibody systems, 3rd edn. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  33. Simo J, Vu-Quoc L (1986a) On dynamic analysis of flexible beams under large overall motion- the plane case: part I. J Appl Mech 53(3):849–863

    Article  MATH  Google Scholar 

  34. Simo J, Vu-Quoc L (1987) The role of non-linear theories in transient dynamic analysis of flexible structures. J Sound Vib 119(3):487–508

    Article  MATH  Google Scholar 

  35. Simo JC, Vu-Quoc L (1986b) On the dynamics of flexible beams under large overall motions—the plane case: part II. J Appl Mech 53(4):855–863

    Article  MATH  Google Scholar 

  36. White YCJ (1999) Model order reduction of nonlinear system. PhD thesis, MIT, Cambridge

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Kulkarni.

Appendix: Calculation of internal force vector and the inertia term

Appendix: Calculation of internal force vector and the inertia term

The equations of motion of a beam undergoing large rotations are derived using the corotational approach. The corotating beam element (see Fig. 1) in local coordinate is based on the Euler Bernoulli beam theory. Linear interpolation is used for axial displacement (u) while a cubic interpolation is used for transverse displacement (w). Thus the axial displacement, the transverse displacement and the rotation can be approximated as

$$\begin{aligned} u= & {} \frac{x}{L}\bar{u} \end{aligned}$$
(35)
$$\begin{aligned} w= & {} x\bigg (1-\frac{x}{L}\bigg )^2{\bar{\theta _{1}}}+\bigg (\frac{x^3}{L^2}-\frac{x^2}{L}\bigg ){\bar{\theta _{2}}} \end{aligned}$$
(36)
$$\begin{aligned} \theta= & {} \bigg (\frac{3x^2}{L^2}-\frac{4x}{L}+1\bigg ){\bar{\theta _{1}}}+\bigg (\frac{3x^2}{L^2}-\frac{2x}{L}\bigg ){\bar{\theta _{2}}} \end{aligned}$$
(37)

where \(\bar{u}\) is the local axial displacement and \({\bar{\theta _{1}}}\) and \({\bar{\theta _{2}}}\) are the local rotations at nodes 1 and 2. The derivation of the internal force term and the inertia term in the equation of motion is given next.

1.1 Calculation of the internal force vector

The internal force vector is derived following Crisfield’s approach [14] which is based on the principle of virtual work. Using the above approximations for the local beam, the local axial force (N), and end moments \(M_1\) and \(M_2\) can be derived as follows [14],

$$\begin{aligned}&N=\frac{EA\bar{u}}{L} \end{aligned}$$
(38)
$$\begin{aligned}&\begin{bmatrix} M_1\\ M_2 \end{bmatrix} = \frac{EI}{L} \begin{bmatrix} 4&2\\ 2&4 \end{bmatrix} \begin{bmatrix} {\bar{\theta _{1}}}\\ {\bar{\theta _{2}}} \end{bmatrix} \end{aligned}$$
(39)

Note that the local internal force vector \(\bar{\mathbf{f }}_I^{e}\) is given by,

$$\begin{aligned} \bar{\mathbf{f }}_I= [N \,\,\, M_1\,\,\, M_2]^T \end{aligned}$$
(40)

The local tangent stiffness, \(\mathbf{K}_{l}\), can be obtained by relating the local internal forces vector, \({\bar{\mathbf{f}}}^{e}_{l}\), with local displacement vector, \(\bar{\mathbf{q}}^{e}\), and is given by,

$$\begin{aligned} \mathbf{K}_{l}=\left[ \begin{array}{c@{\quad }c@{\quad }c} EA/L&{}0&{}0\\ 0&{}4EI/L&{}2EI/L\\ 0&{}2EI/L&{}4EI/L \end{array}\right] \end{aligned}$$

The global internal force vector (\(\mathbf f _I^{e}\)) can be related to the local internal force vector by

$$\begin{aligned} \mathbf f _I^{e}=\mathbf B ^T\bar{\mathbf{f }}^{e} \end{aligned}$$
(41)

where, \(\mathbf B \) is a transformation matrix given by,

$$\begin{aligned} \mathbf B = \begin{bmatrix} \mathbf b _1\\ \mathbf b _2\\ \mathbf b _3 \end{bmatrix}= \begin{bmatrix} -c&-s&\quad 0&\quad c&\quad s&\quad 0\\ -s/L_n&\quad c/L_n&\quad 1&\quad s/L_n&\quad -c/L_n&\quad 0\\ -s/L_n&\quad c/L_n&\quad 0&\quad s/L_n&\quad -c/L_n&\quad 1 \end{bmatrix} \end{aligned}$$
(42)

Here \(c=\cos (\beta )\), \(s=\sin (\beta )\) and \(L_n\) is the new length. and \(\mathbf z =[s\,\,\, -c\,\,\,\,\, 0\,\,\, -s\,\,\,\,\, c\,\,\,\,\, 0]^T\)

1.2 Calculation of inertia force vector

The inertia force vector is obtained using Le’s approach [25] and is based on using the expression of the kinetic energy of the beam element. In terms of the kinetic energy, the inertia force vector is given by [25],

$$\begin{aligned} \mathbf f _k^e=\frac{d}{dt}\bigg [\frac{\partial K^e}{\partial \dot{\mathbf{q ^e}} }\bigg ]-\bigg [\frac{\partial K^e}{\partial \mathbf q ^e}\bigg ] \end{aligned}$$
(43)

where, \(K^e\) is the kinetic energy of the beam element. The expression for the kinetic energy in terms of a global nodal velocity vector \(\dot{\mathbf{q ^e}}\) can be written in the form of,

$$\begin{aligned} K^e=\frac{1}{2}\dot{\mathbf{q ^e}}^T\mathbf M ^e\dot{\mathbf{q ^e}} \end{aligned}$$
(44)

where, \(\dot{\mathbf{q ^e}}=[\dot{u}_1 \,\,\, \dot{w}_1 \,\,\, \dot{\theta }_1\,\,\, \dot{u}_2 \,\,\, \dot{w}_2 \,\,\, \dot{\theta }_2]^T\) is a global nodal velocity vector and \(\mathbf M ^e\) is an elemental mass matrix in reference configuration. The elemental mass matrix in reference configuration is related to elemental mass matrix in local configuration \(\mathbf M _l^e\) as,

$$\begin{aligned} \mathbf M ^e=\mathbf{T ^e}^T\mathbf M _l^e\mathbf T ^e \end{aligned}$$
(45)

where, \(\mathbf T ^e\) is a transformation matrix and given by,

$$\begin{aligned} \mathbf T ^e= \begin{bmatrix} c&\quad s&\quad 0&\quad 0&\quad 0&\quad 0\\ -s&\quad c&\quad 0&\quad 0&\quad 0&\quad 0\\ 0&\quad 0&\quad 1&\quad 0&\quad 0&\quad 0 \\ 0&\quad 0&\quad 0&\quad c&\quad s&\quad 0\\ 0&\quad 0&\quad 0&\quad -s&\quad c&\quad 0\\ 0&\quad 0&\quad 0&\quad 0&\quad 0&\quad 1 \end{bmatrix} \end{aligned}$$
(46)

Now the local mass matrix \(\mathbf M _l^e\) is derived by making two assumptions. (i) local transverse displacement w is very small (ii) The new length of the beam element is approximately equal to the original length of the beam element. The local mass matrix \(\mathbf M _l^e\) is then be written as,

$$\begin{aligned} \mathbf M _l^e=\mathbf{M _l^e}^1+\mathbf{M _l^e}^2 \end{aligned}$$
(47)

where, \(\mathbf{M _l^e}^1\) is the local mass matrix for axial and transverse displacement and \(\mathbf{M _l^e}^2\) is the local mass matrix for rotation. \(\mathbf{M _l^e}^1\) and \(\mathbf{M _l^e}^2\) are given by,

$$\begin{aligned}&\mathbf{M _l^e}^1=\frac{\rho A L}{420} \begin{bmatrix} 140&(21{\bar{\theta _{1}}}-14{\bar{\theta _{2}}})&0&70&-(21{\bar{\theta _{1}}}-14{\bar{\theta _{2}}})&0\\ (21{\bar{\theta _{1}}}-14{\bar{\theta _{2}}})&156&22L&(14{\bar{\theta _{1}}}-21{\bar{\theta _{2}}})&54&-13L\\ 0&22L&4L^2&0&13L&-3L^2 \\ 70&(14{\bar{\theta _{1}}}-21{\bar{\theta _{2}}})&0&140&-(14{\bar{\theta _{1}}}-21{\bar{\theta _{2}}})&0\\ -(21{\bar{\theta _{1}}}-14{\bar{\theta _{2}}})&54&13L&(14{\bar{\theta _{1}}}-21{\bar{\theta _{2}}})&156&-22L\\ 0&-13L&-3L^2&0&22L&4L^2 \end{bmatrix} \end{aligned}$$
(48)
$$\begin{aligned}&\mathbf{M _l^e}^2=\frac{\rho I}{30L} \begin{bmatrix} 0&\quad 0&\quad 0&\quad 0&\quad 0&\quad 0\\ 0&\quad 36&\quad 3L&\quad 0&\quad -36&\quad 3L\\ 0&\quad 3L&\quad 4L^2&\quad 0&\quad -3L&\quad -L^2 \\ 0&\quad 0&\quad 0&\quad 0&\quad 0&\quad 0\\ 0&\quad -36&\quad -3L&\quad 0&\quad 36&\quad -3L\\ 0&\quad 3L&\quad -L^2&\quad 0&\quad -3L&\quad 4L^2 \end{bmatrix} \end{aligned}$$
(49)

The expressions for the two terms of Eq. (43) are given next.

1.2.1 Calculation of the first term of Eq. (43)

The first term of Eq. (43) can be written as

$$\begin{aligned} \frac{d}{dt}\bigg [\frac{\partial K^e}{\partial \dot{\mathbf{q }}^e}\bigg ]=\mathbf M ^e\ddot{\mathbf{q ^e}}+\dot{\mathbf{M ^e}}\dot{\mathbf{q ^e}} \end{aligned}$$
(50)

Note that \(\mathbf M ^e\) is a function of \(\beta \), \({\bar{\theta _{1}}}\) and \({\bar{\theta _{2}}}\) which are time dependent. The expression for \(\dot{\mathbf{M }}^e\) is given by

$$\begin{aligned} \dot{\mathbf{M }}^e=\mathbf M _{\beta }^e\dot{\beta }+\mathbf M _{{\bar{\theta _{1}}}}^e\dot{{\bar{\theta _{1}}}}+\mathbf M _{{\bar{\theta _{2}}}}^e\dot{{\bar{\theta _{2}}}} \end{aligned}$$
(51)

where

$$\begin{aligned} \mathbf M _{\beta }^e=\frac{\partial \mathbf M ^e}{\partial \beta },\;\;\; \mathbf M _{{\bar{\theta _{1}}}}^e= \frac{\partial \mathbf M ^e}{\partial {\bar{\theta _{1}}}}\;\;\; \text{ and }\;\;\; \mathbf M _{{\bar{\theta _{2}}}}^e=\frac{\partial \mathbf M ^e}{\partial {\bar{\theta _{2}}}} \end{aligned}$$

Equation (51) can be rewritten as,

$$\begin{aligned} {\dot{\mathbf{M }}}^e=\mathbf{M }_{\beta }^e\bigg (\frac{\mathbf{z }^T}{L_n}\bigg ){\dot{\mathbf{q }}}^e +\mathbf{M }_{{\bar{\theta _{1}}}}^e(\mathbf{b }_2^T{\dot{\mathbf{q }}}^e) +\mathbf{M }_{{\bar{\theta _{2}}}}^e(\mathbf{b }_3^T{\dot{\mathbf{q }}}^e) \end{aligned}$$
(52)

Therefore, Eq. (50) can be written as,

$$\begin{aligned}&\frac{d}{dt}\bigg [\frac{\partial K^e}{\partial {\dot{\mathbf{q }}}^e}\bigg ]=\mathbf{M }^e{\ddot{\mathbf{q }}}^e +\bigg [\mathbf{M }_{\beta }^e\bigg (\frac{\mathbf{z }^T}{L_n}\bigg ){\dot{\mathbf{q }}}^e\nonumber \\&\quad +\,\mathbf{M }_{{\bar{\theta _{1}}}}^e(\mathbf{b }_2^T {\dot{\mathbf{q }}}^e)+\mathbf{M }_{{\bar{\theta _{2}}}}^e(\mathbf{b }_3^T{\dot{\mathbf{q }}}^e)\bigg ] {\dot{\mathbf{q }}}^e \end{aligned}$$
(53)

The expression for \(\mathbf M _{\beta }^e\) can be obtained by differentiating Eq. (45) with respect to \(\beta \)

$$\begin{aligned} \mathbf M _{\beta }^e=\frac{d\mathbf{T ^e}^T}{d\beta }{} \mathbf M _l^e\mathbf T ^e+\mathbf{T ^e}^T\mathbf M _l^e\frac{d\mathbf T ^e}{d\beta } \end{aligned}$$
(54)

where,

$$\begin{aligned} \frac{d\mathbf T ^e}{d\beta }= \begin{bmatrix} 0&\quad 1&\quad 0&\quad 0&\quad 0&\quad 0\\ -1&\quad 0&\quad 0&\quad 0&\quad 0&\quad 0\\ 0&\quad 0&\quad 0&\quad 0&\quad 0&\quad 0 \\ 0&\quad 0&\quad 0&\quad 0&\quad 1&\quad 0\\ 0&\quad 0&\quad 0&\quad -1&\quad 0&\quad 0\\ 0&\quad 0&\quad 0&\quad 0&\quad 0&\quad 0 \end{bmatrix}{} \mathbf T ^e=\mathbf I _1^e\mathbf T ^e \end{aligned}$$
(55)

Therefore Eq. (54) can be written as,

$$\begin{aligned} \mathbf M _{\beta }^e=\mathbf{T ^e}^T(\mathbf I _1^e\mathbf M _l^e+\mathbf M _l^e\mathbf I _1^e)\mathbf T ^e \end{aligned}$$
(56)

Similarly, expressions for \(\mathbf M _{{\bar{\theta _{1}}}}^e\) and \(\mathbf M _{{\bar{\theta _{2}}}}^e\) are given by,

$$\begin{aligned} \mathbf M _{{\bar{\theta _{1}}}}^e= & {} \mathbf{T ^e}^T\frac{\partial \mathbf M _l^e}{\partial {\bar{\theta _{1}}}}{} \mathbf T ^e \end{aligned}$$
(57)
$$\begin{aligned} \mathbf M _{{\bar{\theta _{2}}}}^e= & {} \mathbf{T ^e}^T\frac{\partial \mathbf M _l^e}{\partial {\bar{\theta _{2}}}}{} \mathbf T ^e \end{aligned}$$
(58)

where,

$$\begin{aligned} \frac{\partial \mathbf M _l^e}{\partial {\bar{\theta _{1}}}}= & {} \frac{\rho A L}{60} \begin{bmatrix} 0&\quad 3&\quad 0&\quad 0&\quad -3&\quad 0\\ 3&\quad 0&\quad 0&\quad 2&\quad 0&\quad 0\\ 0&\quad 0&\quad 0&\quad 0&\quad 0&\quad 0 \\ 0&\quad 2&\quad 0&\quad 0&\quad -2&\quad 0\\ -3&\quad 0&\quad 0&\quad -2&\quad 0&\quad 0\\ 0&\quad 0&\quad 0&\quad 0&\quad 0&\quad 0 \end{bmatrix} \end{aligned}$$
(59)
$$\begin{aligned} \frac{\partial \mathbf M _l^e}{\partial {\bar{\theta _{2}}}}= & {} \frac{\rho A L}{60} \begin{bmatrix} 0&\quad -2&\quad 0&\quad 0&\quad 2&\quad 0\\ -2 \quad&0&\quad 0&\quad -3&\quad 0&\quad 0\\ 0&\quad 0&\quad 0&\quad 0&\quad 0&\quad 0 \\ 0&\quad -3&\quad 0&\quad 0&\quad 3&\quad 0\\ 2&\quad 0&\quad 0&\quad 3&\quad 0&\quad 0\\ 0&\quad 0&\quad 0&\quad 0&\quad 0&\quad 0 \end{bmatrix} \end{aligned}$$
(60)

1.2.2 Calculation of second term of Eq. (43)

The second term of Eq. (43) is given by

$$\begin{aligned} \frac{\partial K^e}{\partial \mathbf q ^e}= & {} \frac{\partial K^e}{\partial \beta } \frac{\partial \beta }{\partial \mathbf q ^e} +\frac{\partial K^e}{\partial {\bar{\theta _{1}}}} \frac{\partial {\bar{\theta _{1}}}}{\partial \mathbf q ^e} +\frac{\partial K^e}{\partial {\bar{\theta _{2}}}} \frac{\partial {\bar{\theta _{2}}}}{\partial \mathbf q ^e} \nonumber \\= & {} \bigg (\frac{1}{2}\dot{\mathbf{q }}^{eT}{} \mathbf M _{\beta }^e\dot{\mathbf{q }}^e \bigg ) \frac{\partial \beta }{\partial \mathbf q ^e}\nonumber \\&+\, \bigg (\frac{1}{2}\dot{\mathbf{q }}^{eT}{} \mathbf M _{{\bar{\theta _{1}}}}^e\dot{\mathbf{q }}^e\bigg ) \frac{\partial {\bar{\theta _{1}}}}{\partial \mathbf q ^e} +\bigg (\frac{1}{2}\dot{\mathbf{q }}^{eT}{} \mathbf M _{{\bar{\theta _{2}}}}^e\dot{\mathbf{q }}^e\bigg ) \frac{\partial {\bar{\theta _{2}}}}{\partial \mathbf q ^e} \end{aligned}$$
(61)

Equation (61) can be rewritten as,

$$\begin{aligned} \frac{\partial K^e}{\partial \mathbf{q }^e}=\bigg (\frac{1}{2}{\dot{\mathbf{q }}}^{eT}\mathbf{M }_{\beta }^e{\dot{\mathbf{q }}}^e\bigg ) \frac{\mathbf{z }}{L_n} +\bigg (\frac{1}{2}{\dot{\mathbf{q }}}^{eT}\mathbf{M }_{{\bar{\theta _{1}}}}^e{\dot{\mathbf{q }}}^e\bigg ) \mathbf{b }_2 +\bigg (\frac{1}{2}{\dot{\mathbf{q }}}^{eT}\mathbf{M }_{{\bar{\theta _{2}}}}^e{\dot{\mathbf{q }}}^e\bigg ) \mathbf{b }_3 \end{aligned}$$
(62)

Now the inertia force term can be obtained by substituting Eqs. (53) and (62) in Eq. (43),

$$\begin{aligned} \mathbf{f }_k^e= & {} \mathbf{M }^e{\ddot{\mathbf{q }}}^e +\left[ \mathbf{M }_{\beta }^e \bigg (\frac{\mathbf{z }^T}{L_n}\bigg ){\dot{\mathbf{q }}}^e +\mathbf{M }_{{\bar{\theta _{1}}}}^e(\mathbf{b }_2^T {\dot{\mathbf{q }}}^e)+\mathbf{M }_{{\bar{\theta _{2}}}}^e(\mathbf{b }_3^T {\dot{\mathbf{q }}}^e)\right] {\dot{\mathbf{q }}}^e\nonumber \\&-\,\left[ \bigg (\frac{1}{2} {\dot{\mathbf{q }}}^{eT}\mathbf{M }_{\beta }^e{\dot{\mathbf{q }}}^e\bigg ) \frac{\mathbf{z }}{L_n}+\bigg (\frac{1}{2}{\dot{\mathbf{q }}}^{eT} \mathbf{M }_{{\bar{\theta _{1}}}}^e{\dot{\mathbf{q }}}^e\bigg ) \mathbf{b }_2 \,+\,\bigg (\frac{1}{2}{\dot{\mathbf{q }}}^{eT} \mathbf{M }_{{\bar{\theta _{2}}}}^e{\dot{\mathbf{q }}}^e\bigg ) \mathbf{b }_3 \right] \nonumber \\ \end{aligned}$$
(63)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaonkar, A.K., Kulkarni, S.S. Model order reduction for dynamic simulation of slender beams undergoing large rotations. Comput Mech 59, 809–829 (2017). https://doi.org/10.1007/s00466-017-1374-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1374-7

Keywords

Navigation