Skip to main content

Advertisement

Log in

Pharmacophore-based screening and drug repurposing exemplified on glycogen synthase kinase-3 inhibitors

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The current study was conducted to elaborate a novel pharmacophore model to accurately map selective glycogen synthase kinase-3 (GSK-3) inhibitors, and perform virtual screening and drug repurposing. Pharmacophore modeling was developed using PHASE on a data set of 203 maleimides. Two benchmarking validation data sets with focus on selectivity were assembled using ChEMBL and PubChem GSK-3 confirmatory assays. A drug repurposing experiment linking pharmacophore matching with drug information originating from multiple data sources was performed. A five-point pharmacophore model was built consisting of a hydrogen bond acceptor (A), hydrogen bond donor (D), hydrophobic (H), and two rings (RR). An atom-based 3D quantitative structure–activity relationship (QSAR) model showed good correlative and satisfactory predictive abilities (training set \({R}^{2}= 0.904\); test set: \({Q}^{2}= 0.676\); whole data set: stability \(s = 0.803\)). Virtual screening experiments revealed that selective GSK-3 inhibitors are ranked preferentially by Hypo-1, but fail to retrieve nonselective compounds. The pharmacophore and 3D QSAR models can provide assistance to design novel, potential GSK-3 inhibitors with high potency and selectivity pattern, with potential application for the treatment of GSK-3-driven diseases. A class of purine nucleoside antileukemic drugs was identified as potential inhibitor of GSK-3, suggesting the reassessment of the target range of these drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

GSK-3:

Glycogen synthase kinase-3

CMGC:

Kinase group named after the initials of some members, which include key kinases: the MAPK growth and stress response kinases, the cell cycle CDK (cyclin-dependent kinases), and kinases involved in splicing and metabolic control

CDK-2:

Cyclin-dependent kinase-2

DISCO:

DIStance COmparison (DISCO) technique

DUD:

Directory of useful decoys

MUV:

Maximum unbiased validation

HTS:

High-throughput screening

NCI:

National Cancer Institute

CDK-4:

Cyclin-dependent kinase-4

PKC:

Protein kinase C

RMSD:

Root mean squared deviation

PDB:

Protein Data Bank

FDA:

Food and Drug Administration

ROC:

Receiver operating characteristic

AUC:

Area under the curve

AROCE:

Addition of ROC enrichment

eROCE:

Exponential ROC enrichment

OPLS:

Optimized potentials for liquid simulations

PLS:

Partial least squares

CoMFA:

Comparative molecular field analysis

NF-kappaB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

XIAP:

X-linked inhibitor of apoptosis protein

MLL:

Myeloid/lymphoid or mixed-lineage leukemia

CLL:

Chronic lymphocytic leukemia

MM:

Multiple myeloma

AML:

Acute myeloid leukemia

CML:

Chronic myelogenous leukemia

T-ALL:

T-cell acute lymphoblastic leukemia

T-LBL:

T-cell acute lymphoblastic lymphoma

PI3K:

Phosphatidylinositol-4,5-bisphosphate 3-kinase

Akt:

Serine/threonine kinase Akt (also known as protein kinase B or PKB)

mTOR:

Mechanistic target of rapamycin, also known as mammalian target of rapamycin (mTOR)

FOXO:

Forkhead box O3

Cn:

Calcineurin

Bcl-2:

B-cell lymphoma 2

MCL-1:

Induced myeloid leukemia cell differentiation protein Mcl-1

B-CLL:

B-cell chronic lymphocytic leukemia

p53:

Tumor protein p53

HCL:

Hairy cell leukemia

Wnt:

Wnt signaling pathway

Mdm2:

Mouse double minute 2 homolog

VEGFR:

Vascular endothelial growth factor receptor

5-HT3:

5-Hydroxytryptamine receptor

IBS:

Irritable bowel syndrome

References

  1. Kannan N, Neuwald AF (2004) Evolutionary constraints associated with functional specificity of the CMGC protein kinases MAPK, CDK, GSK, SRPK, DYRK, and CK2alpha. Protein Sci 13:2059–2077. doi:10.1110/ps.04637904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hong M, Chen DC, Klein PS, Lee VM (1997) Lithium reduces tau phosphorylation by inhibition of glycogen synthase kinase-3. J Biol Chem 272:25326–25332. doi:10.1074/jbc.272.40.25326

    Article  CAS  PubMed  Google Scholar 

  3. Welsh GI, Miller CM, Loughlin AJ, Price NT, Proud CG (1998) Regulation of eukaryotic initiation factor eIF2B: glycogen synthase kinase-3 phosphorylates a conserved serine which undergoes dephosphorylation in response to insulin. FEBS Lett 421:125–130. doi:10.1016/S0014-5793(97)01548-2

    Article  CAS  PubMed  Google Scholar 

  4. Hart MJ, de los Santos R, Albert IN, Rubinfeld B, Polakis P (1998) Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Curr Biol 8:573–581. doi:10.1016/S0960-9822(98)70226-X

    Article  CAS  PubMed  Google Scholar 

  5. Gao C, Hölscher C, Liu Y, Li L (2011) GSK3: a key target for the development of novel treatments for type 2 diabetes mellitus and Alzheimer disease. Rev Neurosci 2123:1–11. doi:10.1515/rns.2011.061

    Google Scholar 

  6. Zhai P, Sadoshima J (2012) Glycogen synthase kinase-3\(\beta \) controls autophagy during myocardial ischemia and reperfusion. Autophagy 8:138–139. doi:10.4161/auto.8.1.18314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hofmann C, Dunger N, Schölmerich J, Falk W, Obermeier F (2010) Glycogen synthase kinase 3-\(\beta \): a master regulator of tolllike receptor-mediated chronic intestinal inflammation. Inflamm Bowel Dis 16:1850–1858. doi:10.1002/ibd.21294

    Article  PubMed  Google Scholar 

  8. Schütz SV, Schrader AJ, Zengerling F, Genze F, Cronauer MV, Schrader M (2011) Inhibition of glycogen synthase kinase-3\(\beta \) counteracts ligand-independent activity of the androgen receptor in castration resistant prostate cancer. PLoS ONE 6:e25341. doi:10.1371/journal.pone.0025341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Miyashita K, Nakada M, Shakoori A, Ishigaki Y, Shimasaki T, Motoo Y, Kawakami K, Minamoto T (2009) An emerging strategy for cancer treatment targeting aberrant glycogen synthase kinase 3\(\beta \). Anticancer Agents Med Chem 9:1114–1122. doi:10.2174/187152009789734982

    Article  CAS  PubMed  Google Scholar 

  10. Thotala DK, Hallahan DE, Yazlovitskaya EM (2008) Inhibition of glycogen synthase kinase 3\(\beta \) attenuates neurocognitive dysfunction resulting from cranial irradiation. Cancer Res 68:5859–5868. doi:10.1158/0008-5472.CAN-07-6327

    Article  CAS  PubMed  Google Scholar 

  11. Mishra R (2010) Glycogen synthase kinase 3 beta: can it be a target for oral cancer. Mol Cancer 9:144–159. doi:10.1186/1476-4598-9-144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Smith DG, Buffet M, Fenwick AE, Haigh D, Ife RJ, Saunders M, Slingsby BP, Stacey R, Ward RW (2001) 3-Anilino-4-arylmaleimides: potent and selective inhibitors of glycogen synthase kinase-3 (GSK-3). Bioorg Med Chem Lett 11:635–639. doi:10.1016/S0960-894X(00)00721-6

    Article  CAS  PubMed  Google Scholar 

  13. Vougogiannopoulou K, Ferandin Y, Bettayeb K, Myrianthopoulos V, Lozach O, Fan Y, Johnson CH, Magiatis P, Skaltsounis AL, Mikros E, Meijer L (2008) Soluble 3’,6-substituted indirubins with enhanced selectivity toward glycogen synthase kinase-3 alter circadian period. J Med Chem 2351:6421–6431. doi:10.1021/jm800648y

    Article  CAS  Google Scholar 

  14. Stukenbrock H, Mussmann R, Geese M, Ferandin Y, Lozach O, Lemcke T, Kegel S, Lomow A, Burk U, Dohrmann C, Meijer L, Austen M, Kunick C (2008) 9-Cyano-1-azapaullone (cazpaullone), a glycogen synthase kinase-3 (GSK-3) inhibitor activating pancreatic beta cell protection and replication. J Med Chem 1051:2196–2207. doi:10.1021/jm701582f

    Article  CAS  Google Scholar 

  15. Mettey Y, Gompel M, Thomas V, Garnier M, Leost M, Ceballos-Picot I, Noble M, Endicott J, Vierfond JM, Meijer L (2003) Aloisines, a new family of CDK/GSK-3 inhibitors. SAR study, crystal structure in complex with CDK2, enzyme selectivity, and cellular effects. J Med Chem 46:222–236. doi:10.1021/jm020319p

    Article  CAS  PubMed  Google Scholar 

  16. Meijer L, Thunnissen AM, White AW, Garnier M, Nikolic M, Tsai LH, Walter J, Cleverley KE, Salinas PC, Wu YZ, Biernat J, Mandelkow EM, Kim SH, Pettit GR (2000) Inhibition of cyclin-dependent kinases, GSK-3beta and CK1 by hymenialdisine, a marine sponge constituent. Chem Biol 7:51–63. doi:10.1016/S1074-5521(00)00063-6

    Article  CAS  PubMed  Google Scholar 

  17. Domínguez JM, Fuertes A, Orozco L, del Monte-Millán M, Delgado E, Medina M (2012) Evidence for irreversible inhibition of glycogen synthase kinase-3 by tideglusib. J Biol Chem 287:893–904. doi:10.1074/jbc.M111.306472

    Article  PubMed  CAS  Google Scholar 

  18. del Ser T (2010) Phase IIa clinical trial on Alzheimer’s disease with NP12, a GSK3 inhibitor. Alzheimer’s Dement 6:S147. doi:10.1016/j.jalz.2010.05.455

    Google Scholar 

  19. del Ser T, Steinwachs KC, Gertz HJ, Andrés MV, Gómez-Carrillo B, Medina M, Vericat JA, Redondo P, Fleet D, León T (2013) Treatment of Alzheimer’s disease with the GSK-3 inhibitor tideglusib: a pilot study. J Alzheimers Dis 33:205–215. doi:10.3233/JAD-2012-120805

    PubMed  Google Scholar 

  20. Gaisina IN, Gallier F, Ougolkov AV, Kim KH, Kurome T, Guo S, Holzle D, Luchini DN, Blond SY, Billadeau DD, Kozikowski AP (2009) From a natural product lead to the identification of potent and selective benzofuran-3-yl-(indol-3-yl)maleimides as glycogen synthase kinase 3beta inhibitors that suppress proliferation and survival of pancreatic cancer cells. J Med Chem 52:1853–1863. doi:10.1021/jm801317h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cross DAE, Cubert AA, Chalmers KA, Facci L, Skaper SD, Reith AD (2001) Selective small-molecule inhibitors of glycogen synthase kinase-3 activity protect primary neurones from death. J Neurochem 77:94–102. doi:10.1046/j.1471-4159.2001.00251.x

    Article  CAS  PubMed  Google Scholar 

  22. Culbert AA, Brown MJ, Frame S, Hagen T, Cross DA, Bax B, Reith AD (2001) GSK-3 inhibition by adenoviral FRAT1 overexpression is neuroprotective and induces Tau dephosphorylation and beta catenin stabilisation without elevation of glycogen synthase activity. FEBS Lett 507:288–294. doi:10.1016/S0014-5793(01)02990-8

    Article  CAS  PubMed  Google Scholar 

  23. Coghlan MP, Culbert AA, Cross DA, Corcoran SL, Yates JW, Pearce NJ, Rausch OL, Murphy GJ, Carter PS, Roxbee Cox L, Mills D, Brown MJ, Haigh D, Ward RW, Smith DG, Murray KJ, Reith AD, Holder JC (2000) Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chem Biol 7:793–803. doi:10.1016/S1074-5521(00)00025-9

    Article  CAS  PubMed  Google Scholar 

  24. Henriksen EJ, Dokken BB (2006) Role of glycogen synthase kinase-3 in insulin resistance and type 2 diabetes. Curr Drug Targets 7:1435–1441. doi:10.2174/1389450110607011435

    Article  CAS  PubMed  Google Scholar 

  25. Shoichet BK (2004) Virtual screening of chemical libraries. Nature 432:862–865. doi:10.1038/nature03197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dessalew N, Bharatam PV (2007) Identification of potential glycogen kinase-3 inhibitors by structure based virtual screening. Biophys Chem 128:165–175. doi:10.1016/j.bpc.2007.04.001

    Article  CAS  PubMed  Google Scholar 

  27. Prasanna S, Daga PR, Xie A, Doerksen RJ (2009) Glycogen synthase kinase-3 inhibition by 3-anilino-4-phenylmaleimides: insights from 3D-QSAR and docking. J Comput Aided Mol Des 23:113–127. doi:10.1007/s10822-008-9244-1

    Article  CAS  PubMed  Google Scholar 

  28. Dessalew N, Bharatam PV (2007) 3D-QSAR and molecular docking study on bisarylmaleimide series as glycogen synthase kinase 3, cyclin dependent kinase 2 and cyclin dependent kinase 4 inhibitors: An insight into the criteria for selectivity. Eur J Med Chem 42:1014–1027. doi:10.1016/j.ejmech.2007.01.010

    Article  CAS  PubMed  Google Scholar 

  29. Kim KH, Gaisina I, Gallier F, Holzle D, Blond SY, Mesecar A, Kozikowski AP (2009) Use of molecular modeling, docking, and 3D-QSAR studies for the determination of the binding mode of benzofuran-3-yl-(indol-3-yl)maleimides as GSK-3\(\beta \) inhibitors. J Mol Model 15:1463–1479. doi:10.1007/s00894-009-0498-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Quesada-Romero L, Mena-Ulecia K, Tiznado W, Caballero J (2014) Insights into the interactions between maleimide derivates and GSK3b combining molecular docking and QSAR. PLoS ONE 9:e102212. doi:10.1371/journal.pone.0102212

    Article  PubMed  PubMed Central  Google Scholar 

  31. Agrawal R, Jain P, Narayan S, Radhe D, Bahare S, Ganguly S (2013) Ligand-based pharmacophore detection, screening of potential pharmacophore and docking studies, to get effective glycogen synthase kinase inhibitors. Med Chem Res 22:5504–5535. doi:10.1007/s00044-013-0547-y

    Article  CAS  Google Scholar 

  32. Patel DS, Bharatam PV (2006) New leads for selective GSK-3 inhibition: pharmacophore mapping and virtual screening studies. J Comput Aided Mol Des 20:55–66. doi:10.1007/s10822-006-9036-4

    Article  CAS  PubMed  Google Scholar 

  33. Pradeep H, Rajanikant GK (2012) A rational approach to selective pharmacophore designing: an innovative strategy for specific recognition of Gsk3\(\beta \). Mol Divers 16:553–562. doi:10.1007/s11030-012-9387-9

    Article  CAS  PubMed  Google Scholar 

  34. Katritzky AR, Pacureanu LM, Dobchev DA, Fara DC, Duchowicz PR, Karelson M (2006) QSAR modeling of the inhibition of glycogen synthase kinase-3. Bioorg Med Chem 14:4987–5002. doi:10.1016/j.bmc.2006.03.009

    Article  CAS  PubMed  Google Scholar 

  35. Koes DR, Camacho CJ (2012) ZINCPharmer: pharmacophore search of the ZINC database. Nucl Acids Res 40:W409–W414. doi:10.1093/nar/gks378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular docking. J Med Chem 49:6789–6801. doi:10.1021/jm0608356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rohrer SG, Baumann K (2009) Maximum unbiased validation (MUV) data sets for virtual screening based on PubChem bioactivity data. J Chem Inf Model 49:169–184. doi:10.1021/ci8002649

    Article  CAS  PubMed  Google Scholar 

  38. Wang Y, Suzek T, Zhang J, Wang J, He S, Cheng T, Shoemaker BA, Gindulyte A, Bryant SH (2014) PubChem BioAssay: 2014 update. Nucleic Acids Res 42:D1075–D1082. doi:10.1093/nar/gkt978

    Article  CAS  PubMed  Google Scholar 

  39. Frey KM, Bollini M, Mislak AC, Cisneros JA, Gallardo-Macias R, Jorgensen WL, Anderson KS (2012) Crystal Structures of HIV-1 reverse transcriptase with picomolar inhibitors reveal key interactions for drug design. J Am Chem Soc 134:19501–19503. doi:10.1021/ja3092642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Urich R, Grimaldi R, Luksch T, Frearson JA, Brenk R, Wyatt PG (2014) The design and synthesis of potent and selective inhibitors of Trypanosoma brucei glycogen synthase kinase 3 for the treatment of human african trypanosomiasis. J Med Chem 57:7536–7549. doi:10.1021/jm500239b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang HC, Ye H, Conway BR, Derian CK, Addo MF, Kuo GH, Hecker LR, Croll DR, Li J, Westover L, Xu JZ, Look R, Demarest KT, Andrade-Gordon P, Damiano BP, Maryanoff BE (2004) 3-(7-Azaindolyl)-4-arylmaleimides as potent, selective inhibitors of glycogen synthase kinase-3. Bioorg Med Chem Lett 14:3245–3250. doi:10.1016/j.bmcl.2004.03.090

    Article  CAS  PubMed  Google Scholar 

  42. Ye Q, Xu G, Dan L, Zhe C, Jia L, Hu Y (2009) Synthesis and biological evaluation of novel 4-azaindolyl-indolyl-maleimides as glycogen synthase kinase-3\(\beta \) (GSK-3\(\beta )\) inhibitors. Bioorg Med Chem 17:4302–4312. doi:10.1016/j.bmc.2009.05.031

    Article  CAS  PubMed  Google Scholar 

  43. Engler TA, Malhotra S, Burkholder TP, Henry JR, Mendel D, Porter WJ, Furness K, Diefenbacher C, Marquart A, Reel JK, Li Y, Clayton J, Cunningham B, McLean J, O’Toole JC, Brozinick J, Hawkins E, Misener E, Briere D, Brier RA, Wagner JR, Campbell RM, Anderson BD, Vaughn R, Bennett DB, Meier TI, Cook JA (2005) The development of potent and selective bisarylmaleimide GSK3 inhibitors. Bioorg Med Chem Lett 15:899–903. doi:10.1016/j.bmcl.2004.12.063

    Article  CAS  PubMed  Google Scholar 

  44. Kuo GH, Prouty C, DeAngelis A, Shen L, O’Neill DJ, Shah C, Connolly PJ, Murray WV, Conway BR, Cheung P, Westover L, Xu JZ, Look RA, Demarest KT, Emanuel S, Middleton SA, Jolliffe L, Beavers MP, Chen X (2003) Synthesis and discovery of macrocyclic polyoxygenated bis-7-azaindolylmaleimides as a novel series of potent and highly selective glycogen synthase kinase-3\(\beta \) inhibitors. J Med Chem 46:4021–4031. doi:10.1021/jm030115o

    Article  CAS  PubMed  Google Scholar 

  45. MarvinSketch (2013) version 6.0.6 ChemAxon. http://www.chemaxon.com. Accessed March 2014

  46. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55:6582–6594. doi:10.1021/jm300687e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vogel SM, Bauer MR, Boeckler FM (2011) DEKOIS: demanding evaluation kits for objective in silico screening a versatile tool for benchmarking docking programs and scoring functions. J Chem Inf Model 51:2650–2665. doi:10.1021/ci2001549

    Article  CAS  PubMed  Google Scholar 

  48. Osolodkin DI, Palyulin VA, Zefirov NS (2011) Structure-based virtual screening of glycogen synthase kinase 3b inhibitors: analysis of scoring functions applied to large true actives and decoy sets. Chem Biol Drug Des 78:378–390. doi:10.1111/j.1747-0285.2011.01159.x

    Article  CAS  PubMed  Google Scholar 

  49. Fu G, Sivaprakasam P, Dale OR, Manly SP, Cutler SJ, Doerksen RJ (2014) Pharmacophore modeling, ensemble docking, virtual screening, and biological evaluation on Glycogen Synthase Kinase-3\(\beta \). Mol Inf 33:610–626. doi:10.1002/minf.201400044

    Article  CAS  Google Scholar 

  50. Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies M, Krüger FA, Light Y, Mak L, McGlinchey S, Nowotka M, Papadatos G, Santos R, Overington JP (2014) The ChEMBL bioactivity database: an update. Nucleic Acids Res 42:1083–1090. doi:10.1093/nar/gkt1031

    Article  CAS  Google Scholar 

  51. Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2007) BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities. Nucleic Acids Res 35:D198–D201. doi:10.1093/nar/gkl999

    Article  CAS  PubMed  Google Scholar 

  52. Instant JChem (2013) version 5.12.4 ChemAxon. http://www.chemaxon.com. Accessed June 2014

  53. FILTER (2009) version 2.0.2 OpenEye Scientific Software, Inc. Santa Fe, NM, USA. www.eyesopen.com

  54. Wang R, Ying F, Lai L (1997) A new atom-additive method for calculating partition coefficients. J Chem Inf Comput Sci 37:615–621. doi:10.1021/ci960169p

    Article  CAS  Google Scholar 

  55. Ertl P, Rohde B, Selzer P (2000) Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem 43:3714–3717. doi:10.1021/jm000942e

    Article  CAS  PubMed  Google Scholar 

  56. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25. doi:10.1016/S0169-409X(00)00129-0

    Article  CAS  Google Scholar 

  57. Egan WJ, Merz KM, Baldwin JJ (2000) Prediction of drug absorption using multivariate statistics. J Med Chem 43:3867–3877. doi:10.1021/jm000292e

    Article  CAS  PubMed  Google Scholar 

  58. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kipple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623. doi:10.1021/jm020017n

    Article  CAS  PubMed  Google Scholar 

  59. Martin YC (2005) A bioavailability score. J Med Chem 48:3164–3170. doi:10.1021/jm0492002

    Article  CAS  PubMed  Google Scholar 

  60. Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27:861–874. doi:10.1016/j.patrec.2005.10.010

    Article  Google Scholar 

  61. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36. doi:10.1148/radiology.143.1.7063747

    Article  CAS  PubMed  Google Scholar 

  62. Bemis GW, Murcko MA (1996) The properties of known drugs. 1. Molecular frameworks. J Med Chem 39:2887–2893. doi:10.1021/jm9602928

    Article  CAS  PubMed  Google Scholar 

  63. Nicholls A (2008) What do we know and when do we know it? J Comput Aided Mol Des 22:239–255. doi:10.1007/s10822-008-9170-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Small-Molecule Drug Discovery Suite 2014-1: Phase (2014) version 3.8, Schrödinger, LLC, New York, NY, 2014 Phase, version 3.1 Schrodinger, LLC, New York. http://www.schrodinger.com

  65. LigPrep, Schrödinger, LLC, New York, NY, (2014)

  66. Watts KS, Dalal P, Murphy RB, Sherman W, Friesner RA, Shelley JC (2010) ConfGen: a conformational search method for efficient generation of bioactive conformers. J Chem Inf Model 50:534–546. doi:10.1021/ci100015j

    Article  CAS  PubMed  Google Scholar 

  67. Banks JL, Beard HS, Cao Y, Cho AE, Damm W, Farid R, Felts AK, Halgren TA, Mainz DT, Maple JR, Murphy R, Philipp DM, Repasky MP, Zhang LY, Berne BJ, Friesner RA, Gallicchio E, Levy RM (2005) Integrated modeling program, applied chemical theory (IMPACT). J Comp Chem 26:1752–1780. doi:10.1002/jcc.20292

    Article  CAS  Google Scholar 

  68. Evans DA, Doman TN, Thorner DA, Bodkin MJ (2007) 3D QSAR methods: phase and catalyst compared. J Chem Inf Model 47:1248–1251. doi:10.1021/ci7000082

    Article  CAS  PubMed  Google Scholar 

  69. Tripuraneni NG, Azam MA (2016) A combination of pharmacophore modeling, atom-based 3D-QSAR, molecular docking and molecular dynamics simulation studies on PDE4 enzyme inhibitors. J Biomol Struct Dyn 12:1–12. doi:10.1080/07391102.2015.1119732

    Google Scholar 

  70. RCSB Protein Data Bank. http://www.rcsb.org/pdb/home/home.do. Accessed Jan 2015

  71. Kleywegt GJ, Harris MR, Zou JY, Taylor TC, Wählby A, Jones TA (2004) The Uppsala electron-density server. Acta Cryst D60:2240–2249. doi:10.1107/S0907444904013253

    CAS  Google Scholar 

  72. Shah UA, Deokar HS, Kadam SS, Kulkarn VM (2010) Pharmacophore generation and atom-based 3D-QSAR of novel 2-(4-methylsulfonylphenyl)pyrimidines as COX-2 inhibitors. Mol Divers 14:559–568. doi:10.1007/s11030-009-9183-3

    Article  CAS  PubMed  Google Scholar 

  73. Development Core Team R (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  74. Boran AD, Iyengar R (2010) Systems approaches to polypharmacology and drug discovery. Curr Opin Drug Discov Dev 13:297–309

    CAS  Google Scholar 

  75. Brown D, Superti-Furga G (2003) Rediscovering the sweet spot in drug discovery. Drug Discov Today 8:1067–1077. doi:10.1016/S1359-6446(03)02902-7

    Article  PubMed  Google Scholar 

  76. Cohen AA, Geva-Zatorsky N, Eden E, Frenkel-Morgenstern M, Issaeva I, Sigal A, Milo R, Cohen-Saidon C, Liron Y, Kam Z, Cohen L, Danon T, Perzov N, Alon U (2008) Dynamic proteomics of individual cancer cells in response to a drug. Science 322:1511–1516. doi:10.1126/science.1160165

    Article  CAS  PubMed  Google Scholar 

  77. Miller JR, Dunham S, Mochalkin I, Banotai C, Bowman M, Buist S, Dunkle B, Hanna D, Harwood HJ, Huband MD, Karnovsky A, Kuhn M, Limberakis C, Liu JY, Mehrens S, Mueller WT, Narasimhan L, Ogden A, Ohren J, Prasad JV, Shelly JA, Skerlos L, Sulavik M, Thomas VH, VanderRoest S, Wang L, Wang Z, Whitton A, Zhu T, Stover CK (2009) A class of selective antibacterials derived from a protein kinase inhibitor pharmacophore. Proc Natl Acad Sci USA 106:1737–1742. doi:10.1073/pnas.0811275106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Medina-Franco JL, Giulianotti MA, Welmaker GS, Houghten RA (2013) Shifting from the single to the multitarget paradigm in drug discovery. Drug Discov Today 18:495–501. doi:10.1016/j.drudis.2013.01.008

    Article  PubMed  PubMed Central  Google Scholar 

  79. Csermely P, Korcsmáros T, Kiss HJM, London G, Nussinov R (2013) Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review. Pharmacol Ther 138:333–408. doi:10.1016/j.pharmthera.2013.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M (2008) DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 36:D901–D906. doi:10.1093/nar/gkm958

    Article  CAS  PubMed  Google Scholar 

  81. PubChem Substance Database. http://www.ncbi.nlm.nih.gov/pcsubstance. Accessed Jan 2016

  82. Jain AN, Nicholls A (2008) Recommendations for evaluation of computational methods. J Comput Aided Mol Des 22:133–139. doi:10.1007/s10822-008-9196-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Avram S, Pacureanu LM, Seclaman E, Bora A, Kurunczi L (2011) PLS-DA-Docking Optimized Combined Energetic Terms (PLSDA-DOCET) protocol: a brief evaluation. J Chem Inf Model 51:3169–3179. doi:10.1021/ci2002268

    Article  CAS  PubMed  Google Scholar 

  84. Avram SI, Crisan L, Bora A, Pacureanu LM, Avram S, Kurunczi L (2013) Retrospective group fusion similarity search based on eROCE evaluation metric. Bioorg Med Chem 21:1268–1278. doi:10.1016/j.bmc.2012.12.041

    Article  CAS  PubMed  Google Scholar 

  85. Kramer T, Schmidt B, Lo Monte F (2012) Small-molecule inhibitors of GSK-3: structural insights and their application to Alzheimer’s disease models. Int J Alzheimers Dis. doi:10.1155/2012/381029

    PubMed  PubMed Central  Google Scholar 

  86. Bertrand JA, Thieffine S, Vulpetti A, Cristiani C, Valsasina B, Knapp S, Kalisz HM, Flocco M (2003) Structural characterization of the GSK-3beta active site using selective and non-selective ATP-mimetic inhibitors. J Mol Biol 333:393–407. doi:10.1016/j.jmb.2003.08.031

    Article  CAS  PubMed  Google Scholar 

  87. Patel DS, Dessalew N, Iqbal P, Bharatam PV (2007) Structure-based approaches in the design of GSK-3 selective inhibitors. Curr Protein Pept Sci 8:352–364. doi:10.2174/138920307781369409

    Article  CAS  PubMed  Google Scholar 

  88. Feng L, Geisselbrecht Y, Blanck S, Wilbuer A, Atilla-Gokcumen GE, Filippakopoulos P, Kräling K, Celik MA, Harms K, Maksimoska J, Marmorstein R, Frenking G, Knapp S, Essen LO, Meggers E (2011) Structurally sophisticated octahedral metal complexes as highly selective protein kinase inhibitors. J Am Chem Soc 133:5976–5986. doi:10.1021/ja1112996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pande V, Ramos MJ (2005) Structural basis for the GSK-\(\beta \) binding affinity and selectivity against CDK-2 of 1-(4-aminofurazan-3yl)-5-dialkylaminomethyl-1\(H\)-1,2,3] triazole-4-carboxylic acid derivatives. Bioorg Med Chem Lett 15:5129–5135. doi:10.1016/j.bmcl.2005.08.077

    Article  CAS  PubMed  Google Scholar 

  90. Discovery Studio Visualizer-Accelrys (2009) version 2.5 San Diego, CA. http://accelrys.com

  91. Ilouz R, Kowalsman N, Eisenstein M, Eldar-Finkelman H (2006) Identification of novel glycogen synthase kinase-3 substrate-interacting residues suggests a common mechanism for substrate recognition. J Biol Chem 281:30621–30630. doi:10.1074/jbc.M604633200

    Article  CAS  PubMed  Google Scholar 

  92. Hubbard SR (2000) Protein tyrosine kinase structure and function. Annu Rev Biochem 69:373–398. doi:10.1146/annurev.biochem.69.1.373

    Article  CAS  PubMed  Google Scholar 

  93. ter Haar E, Coll JT, Austen DA, Hsiao HM, Swenson L, Jain J (2001) Structure of GSK3beta reveals a primed phosphorylation mechanism. Nat Struct Biol 8:593–596. doi:10.1038/89624

    Article  PubMed  CAS  Google Scholar 

  94. Dajani R, Fraser E, Roe SM, Young N, Good V, Dale TC, Pearl LH (2001) Crystal structure of glycogen synthase kinase 3 beta: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell 15105:721–732. doi:10.1016/S0092-8674(01)00374-9

    Article  Google Scholar 

  95. Doman TN, McGovern SL, Witherbee BJ, Kasten TP, Kurumbail R, Stallings WC, Connolly DT, Shoichet BK (2002) Molecular docking and high-throughput screening for novel inhibitors of protein tyrosine phosphatase-1B. J Med Chem 2345:2213–2221. doi:10.1021/jm010548w

    Article  CAS  Google Scholar 

  96. Verdonk ML, Berdini V, Hartshorn MJ, Mooij WTM, Murray CW, Taylor RD, Watson P (2004) Virtual screening using protein–ligand docking: avoiding artificial enrichment. J Chem Inf Comput Sci 44:793–806. doi:10.1021/ci034289q

    Article  CAS  PubMed  Google Scholar 

  97. Cheng H, Woodgett J, Maamari M, Force T (2011) Targeting GSK-3 family members in the heart: a very sharp double-edged sword. J Mol Cell Cardiol 51:607–613. doi:10.1016/j.yjmcc.2010.11.020

    Article  CAS  PubMed  Google Scholar 

  98. Rodriquez CO, Mitchell BS, Ayres M, Eriksson S, Gandhi V (2002) Arabinosylguanine is phosphorylated by both cytoplasmic deoxycytidine kinase and mitochondrial deoxyguanosine kinase. Cancer Res 62:3100–3105

    Google Scholar 

  99. Alvarado Y, Welch MA, Swords R, Bruzzi J, Schlette E, Giles FJ (2007) Nelarabine activity in acute biphenotypic leukemia. Leuk Res 31:1600–1603. doi:10.1016/j.leukres.2006.12.013

    Article  CAS  PubMed  Google Scholar 

  100. Gandhi V, Mineishi S, Huang P, Chapman AJ, Yang Y, Chen F, Nowak B, Chubb S, Hertel LW, Plunkett W (1995) Cytotoxicity, metabolism, and mechanisms of action of 2’,2’-difluorodeoxyguanosine in Chinese hamster ovary cells. Cancer Res 55:1517–1524

    CAS  PubMed  Google Scholar 

  101. Brockman RW, Schabel FM Jr, Montgomery JA (1997) Biological activity of 9-\(\beta \)-D-arabinofuranosyl-2-fluoroadenine, a metabolically stable analog of 9-\(\beta \)-D-arabinofuranosyladenine. Biochem Pharmacol 26:2193–2196. doi:10.1016/0006-2952(77)90275-1

    Article  Google Scholar 

  102. Ricci F, Tedeschi A, Morra E, Montillo M (2009) Fludarabine in the treatment of chronic lymphocytic leukemia: a review. Ther Clin Risk Manag 5:187–207

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Robak T (2001) Cladribine in the treatment of chronic lymphocytic leukemia. Leuk Lymphoma 40:551–564. doi:10.3109/10428190109097654

    Article  CAS  PubMed  Google Scholar 

  104. McCubrey JA, Steelman LS, Bertrand FE, Davis NM, Abrams SL, Montalto G, D’Assoro AB, Libra M, Nicoletti F, Maestro R, Basecke J, Cocco L, Cervello M, Martelli AM (2014) Multifaceted roles of GSK-3 and Wnt/\(\beta \)-catenin in hematopoiesis and leukemogenesis: opportunities for therapeutic intervention. Leukemia 28:15–33. doi:10.1038/leu.2013.184

    Article  CAS  PubMed  Google Scholar 

  105. Banerji V, Frumm SM, Ross KN, Li LS, Schinzel AC, Hahn CK, Kakoza RM, Chow KT, Ross L, Alexe G, Tolliday N, Inguilizian H, Galinsky I, Stone RM, DeAngelo DJ, Roti G, Aster JC, Hahn WC, Kung AL, Stegmaier K (2012) The intersection of genetic and chemical genomic screens identifies GSK-3\(\alpha \) as a target in human acute myeloid leukemia. J Clin Invest 122:935–947. doi:10.1172/JCI46465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mirlashari MR, Randen I, Kjeldsen-Kragh J (2012) Glycogen synthase kinase-3 (GSK-3) inhibition induces apoptosis in leukemic cells through mitochondria-dependent pathway. Leuk Res 36:499–508. doi:10.1016/j.leukres.2011.11.013

    Article  CAS  PubMed  Google Scholar 

  107. Wang Z, Smith KS, Murphy M, Piloto O, Somervaille TCP, Cleary ML (2008) Glycogen synthase kinase 3 in MLL leukaemia maintenance and targeted therapy. Nature 455:1205–1209. doi:10.1038/nature07284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Reddiconto G, Toto C, Palamà I, De Leo S, de Luca E, De Matteis S, Dini L, Passerini CG, Di Renzo N, Maffia M, Coluccia AM (2012) Targeting of GSK-3\(\beta \) promotes imatinib-mediated apoptosis in quiescent CD34+ chronic myeloid leukemia progenitors, preserving normal stem cells. Blood 119:2335–2345. doi:10.1182/blood-2011-06-361261

    Article  CAS  PubMed  Google Scholar 

  109. Bustanji Y, Taha MO, Almasri IM, Al-Ghussein MA, Mohammad MK, Alkhatib HS (2009) Inhibition of glycogen synthase kinase by curcumin: Investigation by simulated molecular docking and subsequent in vitro/in vivo evaluation. J Enzyme Inhib Med Chem 24:771–778. doi:10.1080/14756360802364377

    Article  CAS  PubMed  Google Scholar 

  110. Hussain AR, Al-Rasheed M, Manogaran PS, Al-Hussein KA, Platanias LC, Al Kuraya K, Uddin S (2006) Curcumin induces apoptosis via inhibition of PI3’-kinase/AKT pathway in acute T cell leukemias. Apoptosis 11:245–254. doi:10.1007/s10495-006-3392-3

    Article  CAS  PubMed  Google Scholar 

  111. Tosello V, Bordin F, Yu J, Agnusdei V, Indraccolo S, Basso G, Amadori A, Piovan E (2016) Calcineurin and GSK-3 inhibition sensitizes T-cell acute lymphoblastic leukemia cells to apoptosis through X-linked inhibitor of apoptosis protein (XIAP) degradation. Leukemia 30:812–822. doi:10.1038/leu.2015.335

    Article  CAS  PubMed  Google Scholar 

  112. Frame S, Cohen P (2001) GSK3 takes centre stage more than 20 years after its discovery. Biochem J 359:1–16. doi:10.1042/bj3590001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Maurer U, Charvet C, Wagman AS, Dejardin E, Green DR (2006) Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol Cell 1721:749–760. doi:10.1016/j.molcel.2006.02.009

  114. Beurel E, Jope RS (2006) The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog Neurobiol 79:173–189. doi:10.1016/j.pneurobio.2006.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Luo J (2009) Glycogen synthase kinase 3beta (GSK3beta) in tumorigenesis and cancer chemotherapy. Cancer Lett 18273:194–200. doi:10.1016/j.canlet.2008.05.045

    Article  CAS  Google Scholar 

  116. Kaidanovich-Beilin O, Beaulieu JM, Jope RS, Woodgett JR (2012) Neurological Functions of the Masterswitch Protein Kinase GSK-3. Front Mol Neurosci 5:48. doi:10.3389/fnmol.2012.00048

    Article  PubMed  PubMed Central  Google Scholar 

  117. Watcharasit P, Bijur GN, Song L, Zhu J, Chen X, Jope RS (2003) Glycogen synthase kinase-3beta (GSK3beta) binds to and promotes the actions of p53. J Biol Chem 278:48872–48879. doi:10.1074/jbc.M305870200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kulikov R, Boehme KA, Blattner C (2005) Glycogen synthase kinase 3-dependent phosphorylation of Mdm2 regulates p53 abundance. Mol Cell Biol 25:7170–80. doi:10.1128/MCB.25.16.7170-7180.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Millet C, Yamashita M, Heller M, Yu LR, Veenstra TD, Zhang YE (2009) A negative feedback control of TGF-\(\beta \) signaling by GSK3-mediated Smad3 linker phosphorylation at Ser204. J Biol Chem 284:19808–19816. doi:10.1074/jbc.M109.016667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Masch A, Kunick C (2015) Selective inhibitors of Plasmodium falciparum glycogen synthase-3 (PfGSK-3): new antimalarial agents? Biochim Biophys Acta 54:1644–1649. doi:10.1016/j.bbapap.2015.03.013

    Article  CAS  Google Scholar 

  121. Porta C, Paglino C, Mosca A (2014) Targeting PI3K/Akt/mTOR signaling in cancer. Front Oncol 4:64. doi:10.3389/fonc.2014.00064

    Article  PubMed  PubMed Central  Google Scholar 

  122. Matsuda S, Nakanishi A, Wada Y, Kitagishi Y (2013) Roles of PI3K/AKT/PTEN pathway as a target for pharmaceutical therapy. Open Clin Chem J 7:23–29. doi:10.2174/1874104501307010023

    CAS  Google Scholar 

  123. Chen EY, DeRan MT, Ignatius MS, Grandinetti KB, Clagg R, McCarthy KM, Lobbardi RM, Brockmann J, Keller C, Wu X, Langenau DM (2014) Glycogen synthase kinase 3 inhibitors induce the canonical WNT/\(\beta \)-catenin pathway to suppress growth and self-renewal in embryonal rhabdomyosarcoma. Proc Natl Acad Sci USA 111:5349–5354. doi:10.1073/pnas.1317731111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. McCubrey JA, Steelman LS, Bertrand FE, Davis NM, Sokolosky M, Abrams SL, Montalto G, D’Assoro AB, Libra M, Nicoletti F, Maestro R, Basecke J, Rakus D, Gizak A, Demidenko ZN, Cocco L, Martelli AM, Cervello M (2014) GSK-3 as potential target for therapeutic intervention in cancer. Oncotarget 305:2881–2911. doi:10.18632/oncotarget.2037

    Article  Google Scholar 

  125. Thamilselvan V, Menon M, Thamilselvan S (2011) Anticancer efficacy of deguelin in human prostate cancer cells targeting glycogen synthase kinase-3 \(\beta /\beta \)-catenin pathway. Int J Cancer 129:2916–2927. doi:10.1002/ijc.25949

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Chemaxon Ltd., OpenEye Ltd., and Accelrys Inc. for providing academic license. This project was financially supported by the Project No. 1.2/2016 of the Institute of Chemistry of Romanian Academy, Timisoara.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana Pacureanu.

Ethics declarations

Conflict of interest

The authors indicate no potential conflicts of interest.

Additional information

Dedicated to the 150th anniversary of the Romanian Academy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 535 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crisan, L., Avram, S. & Pacureanu, L. Pharmacophore-based screening and drug repurposing exemplified on glycogen synthase kinase-3 inhibitors. Mol Divers 21, 385–405 (2017). https://doi.org/10.1007/s11030-016-9724-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-016-9724-5

Keywords

Navigation