Skip to main content
Log in

Formation of MFI-type zeolite nanoparticles and zeolite-based suspensions

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Based on a commercial zeolite of the MFI type, nanoparticles have been produced using mechanical methods (grinding in a ball or planetary mill, classification by “stirring-up”) and ultrasonic treatment (UST) of zeolite in water. It has been found by spectral methods (XRD, DRIRS, 27Al and 29Si solid-state NMR) and adsorption analysis that the grinding of the zeolite leads to partial degradation of its structure and appearance of defects in the crystalline framework, whereas the zeolite crystal lattice remains completely intact after sonication in the aqueous medium. The sonication destroys MFI agglomerates to form nanoparticles down to 40–50 nm in size. The dispersion of the zeolite nanoparticles in silicone or hydrocarbon oil–(Syltherm 800 or Dowtherm RP, respectively) as a high-boiling-point liquid leads to the formation of ultrafine suspensions, the stability of which depends on the type of the dispersion medium. The nanosized zeolite suspensions are more stable in Dowtherm RP than in Syltherm 800: without agitation, they are persistent for at least 3 weeks (settling at room temperature).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Chernyshev, V. A. Daut, A. K. Surba, et al., Methanol: Properties, Production, and Applications, Ed. by V. A. Daut (Infokhim, Moscow, 2011), Vol. II [in Russian].

  2. A. Galadima and O. Muraza, J. Nat. Gas Sci. Eng. 25, 303 (2015).

    Article  CAS  Google Scholar 

  3. M. Hack, U. Koss, P. Konig, et al.., US Patent No. 7 0153 69 (2006).

  4. U. Olsbye, S. Svelle, M. Bjørgen, et al., Angew. Chem., Int. Ed. Engl. 51, 5810 (2012).

    Article  CAS  Google Scholar 

  5. P. Kumar, J. W. Thybaut, G. B. Marin, et al., Ind. Eng. Chem. Res. 52, 1491 (2013).

    Article  CAS  Google Scholar 

  6. A. Takahashi, W. Xia, Q. Wu, et al., Appl. Catal., A 467, 380 (2013).

    Article  CAS  Google Scholar 

  7. M. V. Kulikova, O. S. Dement’eva, M. I. Ivantsov, et al., Pet. Chem. 55, 537 (2015).

    Article  CAS  Google Scholar 

  8. P. Chen, P. Gupta, M. P. Dudukiovic, and B. A. Toseland, Chem. Eng. Sci. 61, 6553 (2006).

    Article  CAS  Google Scholar 

  9. S. C. Baek, S. H. Kang, J. W. Bae, et al., Energy Fuels 25, 2438 (2011).

    Article  CAS  Google Scholar 

  10. Y. J. Lee, M. H. Jung, J. B. Lee, et al., Catal. Today 228, 175 (2014).

    Article  CAS  Google Scholar 

  11. S. H. Kang, J. W. Bae, K. W. Jun, and H. S. Potdar, Catal. Commun. 9, 2035 (2008).

    Article  CAS  Google Scholar 

  12. H. W. Ham, M. H. Jeong, H. M. Koo, et al., React. Kinet. Mech. Catal. 116, 173 (2015).

    Article  CAS  Google Scholar 

  13. S. P. Naik, T. R. Ryu, V. Bui, et al., Chem. Eng. J. 167, 362 (2011).

    Article  CAS  Google Scholar 

  14. S. N. Khadzhiev, N. V. Kolesnichenko, N. N. Ezhova, et al., RU Patent No 2 547 838 (2015).

  15. S. M. Baghbanian, N. Rezaei, and H. Tashakkorian, Green Chem. 15, 3446 (2013).

    Article  CAS  Google Scholar 

  16. Y. Xu, Y. Song, Y. Suzuki, and Z.-G. Zhang, Catal. Sci. Technol. 3, 2769 (2013).

    Article  CAS  Google Scholar 

  17. G.-T. Vuong, V.-T. Hoang, T.-O. Do, and D.-T. Nguyen, Appl. Catal., A 382, 231 (2010).

    Article  CAS  Google Scholar 

  18. G. Wu, W. Wu, X. Wang, et al., Microporous Mesoporous Mater. 180, 187 (2013).

    Article  CAS  Google Scholar 

  19. B. Kraushaar-Czarnetzki and J. Wijbelt, RU Patent No. 2 169 044 (2001).

  20. R. van Grieken, J. L. Sotelo, J. M. Menendez, and J. A. Melero, Microporous Mesoporous Mater. 39, 135 (2000).

    Article  Google Scholar 

  21. Wang Xang-Dong, Wang Ya-Jun, Yang Wi-Li, et al., Acta Chim. Sinica 63, 354 (2003).

    Google Scholar 

  22. R. R. Willis, D. E. Kuechl, and A. I. Benin, RU Patent No. 2 377 180 (2009).

  23. G. T. Vuong and T O. Do, Microporous Mesoporous Mater. 120, 310 (2009).

    Article  CAS  Google Scholar 

  24. Y. Hu, C. Liu, Y. Zhang, et al., Microporous Mesoporous Mater. 119, 306 (2009).

    Article  CAS  Google Scholar 

  25. C. Li, Y. Wang, B. Shi, et al., Microporous Mesoporous Mater. 117, 104 (2009).

    Article  CAS  Google Scholar 

  26. Z. Herceg, V. Lelas, M. Brncic, et al., Powder Technol. 139, 111 (2004).

    Article  CAS  Google Scholar 

  27. L. K. Kazantseva, T. S. Yusupov, T. Z. Lygina, et al., Glass Ceram. 70, 9 (2014).

    Article  Google Scholar 

  28. L. A. Belaya, V. P. Doronin, and T. P. Sorokina, Catal. Ind. 1, 237 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Kolesnichenko.

Additional information

Original Russian Text © N.V. Kolesnichenko, N.N. Ezhova, O.V. Yashina, 2016, published in Neftekhimiya, 2016, Vol. 56, No. 6, pp. 607–611.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnichenko, N.V., Ezhova, N.N. & Yashina, O.V. Formation of MFI-type zeolite nanoparticles and zeolite-based suspensions. Pet. Chem. 56, 827–831 (2016). https://doi.org/10.1134/S0965544116090115

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544116090115

Keywords

Navigation