Skip to main content

Advertisement

Log in

A novel marker in acute central serous chorioretinopathy: thiol/disulfide homeostasis

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to compare dynamic thiol/disulfide homeostatic status in acute central serous chorioretinopathy (CSCR) patients by using a novel and automated assay determining dynamic thiol/disulfide homeostasis.

Methods

Fifty-one patients with acute CSCR (study group) and 65 healthy individuals (control group) were enrolled in this study. Diagnosis of acute CSCR was made clinically and using spectral-domain RTVue OCT (optical coherence tomography) (Optovue, Fremont, CA). Fluorescein angiography confirmed the diagnosis of acute CSCR in all subjects. Total thiol, native thiol, disulfide amount, and native thiol/disulfide ratio (TDR) were calculated in the blood samples.

Results

Mean total thiol, native thiol, and native TDR values were lower in patients with acute CSCR (364.2 ± 14.1, 326.4 ± 13.2, 17.14 ± 1.9, respectively) than in healthy eyes (441.2 ± 16.3, 398.5 ± 16.4, 22.70 ± 2.15, respectively; mean total thiol, p = 0.017; native thiol, p = 0.011; native TDR, p = 0.031).

Conclusions

Total thiol, native thiol, and native TDR were significantly lower statistically in patients with acute CSCR when compared with healthy controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tittl MK, Spaide RF, Wong D et al (1999) Systemic findings associated with central serous chorioretinopathy. Am J Ophthalmol 128:63–68

    Article  CAS  PubMed  Google Scholar 

  2. Haimovici R, Koh S, Gagnon DR et al (2004) Risk factors for central serous chorioretinopathy: a case-control study. Ophthalmology 111:244–249

    Article  PubMed  Google Scholar 

  3. Errera MH, Kohly RP, da Cruz L (2013) Pregnancy associated retinal diseases and their management. Surv Ophthalmol 58:127–142

    Article  PubMed  Google Scholar 

  4. Casella AM, Berbel RF, Bressanim GL et al (2012) Helicobacter pylori as a potential target for the treatment of central serous chorioretinopathy. Clinics (Sao Paulo) 67:1047–1052

    Article  Google Scholar 

  5. Spahn C, Wiek J, Burger T et al (2003) Psychosomatic aspects in patients with central serous chorioretinopathy. Br J Ophthalmol 87:704–708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Fawzi AA, Holland GN, Kreiger AE et al (2006) Central serous chorioretinopathy after solid organ transplantation. Ophthalmology 113:805–813

    Article  PubMed  Google Scholar 

  7. Gass JD (1997) Specific diseases causing disciform macular detachment. Stereosc Atlas of Macul Dis 1:52–87

    Google Scholar 

  8. Wang M, Munch IC, Hasler PW et al (2008) Central serous chorioretinopathy. Acta Ophthalmol 86:126–145

    Article  PubMed  Google Scholar 

  9. Piccolino FC, Borgia L (1994) Central serous chorioretinopathy and indocyanine green angiography. Retina 14:231–242

    Article  CAS  PubMed  Google Scholar 

  10. Prunte C, Flammer J (1996) Choroidal capillary and venous congestion in central serous retinopathy. Am J Ophthalmol 121:126–134

    Article  Google Scholar 

  11. Türkcü FM, Yüksel H, Yüksel H et al (2014) Serum dehydroepiandrosterone sulphate, total antioxidant capacity, and total oxidant status in central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol 252(1):17–21

    Article  PubMed  Google Scholar 

  12. Field MG, Elner VM, Park S et al (2000) Detection of retinal metabolic stress resulting from central serous retinopathy. Retina 29(8):1162–1166

    Article  Google Scholar 

  13. Guyer DR, Yannuzzi LA, Slakter JS et al (1994) Digital indocyanine green videoangiography of central serous chorioretinopathy. Arch Ophthalmol 112:1057–1062

    Article  CAS  PubMed  Google Scholar 

  14. Sen CK, Packer L et al (2000) Thiol homeostasis and supplements in physical exercise. Am J Clin Nutr 72:653–669

    Article  Google Scholar 

  15. Turell L, Radi R, Alvarez B (2013) The thiol pool in human plasma: the central contribution of albumin to redox processes. Free Radic Biol Med 65:244–253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Cremers CM, Jakob U (2013) Oxidant sensing by reversible disulfide bond formation. J Biol Chem 288(37):26489–26496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Jones DP, Liang Y (2009) Measuring the poise of thiol/disulfide couples in vivo. Free Radic Biol Med 47(10):1329–1338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Biswas S, Chida AS, Rahman I (2006) Redox modifications of protein–thiols: emerging roles in cell signaling. Biochem Pharmacol 71(5):551–564

    Article  CAS  PubMed  Google Scholar 

  19. Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48(6):749–762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Matteucci E, Giampietro O et al (2010) Thiol signalling network with an eye to diabetes. Molecules 15(12):8890–8903

    Article  CAS  PubMed  Google Scholar 

  21. Go YM, Jones DP (2011) Cysteine/cystine redox signaling in cardiovascular disease. Free Radic Biol Med 50(4):495–509

    Article  CAS  PubMed  Google Scholar 

  22. Prabhu A, Sarcar B, Kahali S et al (2014) Cysteine catabolism: a novel metabolic pathway contributing to glioblastoma growth. Cancer Res 74(3):787–796

    Article  CAS  PubMed  Google Scholar 

  23. Tetik S, Ahmad S, Alturfan AA et al (2010) Determination of oxidant stress in plasma of rheumatoid arthritis and primary osteoarthritis patients. Indian J Biochem Biophys 47(6):353–358

    CAS  PubMed  Google Scholar 

  24. Rodrigues SD, Batista GB, Ingberman M et al (2012) Plasma cysteine/cystine reduction potential correlates with plasma creatinine levels in chronic kidney disease. Blood Purif 34(3–4):231–237

    Article  CAS  PubMed  Google Scholar 

  25. Sbrana E, Paladini A, Bramanti E et al (2004) Quantitation of reduced glutathione and cysteine in human immunodeficiency virus-infected patients. Electrophoresis 25(10–11):1522–1529

    Article  CAS  PubMed  Google Scholar 

  26. Calabrese V, Lodi R, Tonon C et al (2005) Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich’s ataxia. J Neurol Sci 33(1–2):145–162

    Article  Google Scholar 

  27. Smeyne M, Smeyne RJ (2013) Glutathione metabolism and Parkinson’s disease. Free Radic Biol Med 62:13–25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Steele ML, Fuller S, Maczurek AE et al (2013) Chronic inflammation alters production and release of glutathione and related thiols in human U373 astroglial cells. Cell Mol Neurobiol 33(1):19–30

    Article  CAS  PubMed  Google Scholar 

  29. Kuo LM, Kuo CY, Lin CY et al (2014) Intracellular glutathione depletion by oridonin leads to apoptosis in hepatic stellate cells. Molecules 19(3):3327–3344

    Article  PubMed  Google Scholar 

  30. Erel O, Neselioglu S (2014) A novel and automated assay for thiol/disulphide homeostasis. Clin Biochem 47:326–332

    Article  CAS  PubMed  Google Scholar 

  31. Klais CM, Ober MD, Ciardella AP et al (2006) Central serous chorioretinopathy. In: Ryan SJ (ed) Retina, vol II, 4th edn. Mosby, St Louis, pp 1135–1161

    Chapter  Google Scholar 

  32. Piccolino FC, Eandi CM, Ventre L et al (2003) Photodynamic therapy for chronic central serous chorioretinopathy. Retina 23:752–763

    Article  Google Scholar 

  33. Taban M, Boyer DS, Thomas EL et al (2004) Chronic central serous chorioretinopathy: photodynamic therapy. Am J Ophthalmol 137:1073–1080

    Article  PubMed  Google Scholar 

  34. Guyer DR, Yannuzzi LA, Slakter JS et al (1994) Digital indocyanine green videoangiography of central serous chorioretinopathy. Arch Ophthalmol 112:1057–1062

    Article  CAS  PubMed  Google Scholar 

  35. Yavas GF, Kusbeci T, Kasikci M et al (2014) Obstructive sleep apnea in patients with central serous chorioretinopathy. Curr Eye Res 39(1):88–92

    Article  CAS  PubMed  Google Scholar 

  36. Ratanasukon M, Bhurayanontachai P, Jirarattanasopa P (2012) High-dose antioxidants for central serous chorioretinopathy; the randomized placebo-controlled study. BMC Ophthalmol 12:20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Dean RT, Fu S, Stocker R et al (1997) Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324:1–18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Kundi H, Erel O, Balun A et al (2015) Association of thiol/disulfide ratio with syntax score in patients with NSTEMI. Scand Cardiovasc J 49:95–100

    Article  CAS  PubMed  Google Scholar 

  39. Kundi H, Ates I, Kiziltunc E et al (2015) A novel oxidative stress marker in acute myocardial infarction; thiol/disulphide homeostasis. Am J Emerg Med 33(11):1567–1571

    Article  PubMed  Google Scholar 

  40. Altiparmak IH, Erkus ME, Sezen H et al (2016) Evaluation of thiol levels, thiol/disulfide homeostasis and their relation with inflammation in cardiac syndrome X. Coron Artery Dis 27(4):295–301

    Article  PubMed  Google Scholar 

  41. Turkoglu EB, Dikci S, Çelik E et al (2016) Thiol/disulfide homeostasis in patients with central serous chorioretinopathy. Curr Eye Res 22:1–3

    Google Scholar 

  42. Ziegler D (1985) Role of reversible oxidation-reduction of enzyme thiols-disulfides in metabolic regulation. Annu Rev Biochem 54:305–329

    Article  CAS  PubMed  Google Scholar 

  43. Mccord JM (1993) Human disease, free radicals, and the oxidant/antioxidant balance. Clin Biochem 26:351–357

    Article  CAS  PubMed  Google Scholar 

  44. Jiang S, Moriarty-Craige SE, Orr M et al (2005) Oxidant induced apoptosis in human retinal pigment epithelial cells: dependence on extracellular redox state. Invest Ophthalmol Vis Sci 46:1054–1061

    Article  PubMed  Google Scholar 

  45. Dean O, Giorlando F, Berk M (2011) N-Acetylcysteine in psychiatry: current therapeutic evidence and potential mechanisms of action. J Psychiatry Neurosci 36:78–86

    Article  PubMed Central  PubMed  Google Scholar 

  46. Hardy P, Abram D, Li DY et al (1994) Free radicals in retinal and choroidal blood flow autoregulation in the piglet: interaction with prostaglandins. Invest Ophthalmol Vis Sci 35:580–591

    CAS  PubMed  Google Scholar 

  47. Szabo C, Thiemermann C, Vane JR (1993) Inhibition of the production of nitric oxide and vasodilator prostaglandins attenuates the cardiovascular response to bacterial endotoxin in adrenalectomized rats. Proc R Soc Lond B Biol Sci 11:233–238

    Article  Google Scholar 

  48. Beatty S, Koh H, Phil M et al (2000) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 45:115–134

    Article  CAS  PubMed  Google Scholar 

  49. Ames BN, Shigenaga MK, Hagen TM et al (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci 90:7915–7922

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Erel O (2004) A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem 37:112–119

    Article  CAS  PubMed  Google Scholar 

  51. Erel O (2005) A new automated colorimetric method for measuring total oxidant status. Clin Biochem 38:1103–1111

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Altinkaynak.

Ethics declarations

Conflict of interest

The authors declare no financial or proprietary interests.

Ethical approval

The study protocol followed the principles in the Declaration of Helsinki.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altinkaynak, H., Kurkcuoglu, P.Z., Caglayan, M. et al. A novel marker in acute central serous chorioretinopathy: thiol/disulfide homeostasis. Int Ophthalmol 38, 175–181 (2018). https://doi.org/10.1007/s10792-017-0444-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-017-0444-3

Keywords

Navigation