Skip to main content

Advertisement

Log in

Agronomic assessment of a compost consisting of seaweed and fish waste as an organic fertilizer for organic potato crops

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Fish waste, seaweed and pine bark were composted to obtain a stable product rich in organic matter and nutrients for use in organic agriculture. The compost was assessed as an organic fertilizer for potato crops. The influence of three different compost rates (viz., C1 = 32 t ha−1, C2 = 43 t ha−1 and C3 = 65 t ha−1) on potato production and the chemical composition of potato tuber, petiole and foliole was compared with that of a mineral fertilizer (M), a certified organic fertilizer consisting of dehydrated broiler litter (BL) and a control treatment involving no fertilizer (C). The compost exhibited a substantial fertilizing effect and even surpassed the mineral fertilizer in this respect. The C3 treatment increased total production by 53 and 30% relative to C and M, respectively, and was similar to BL in this respect; also, it considerably reduced non-commercial production (calibre <35 mm according to Spanish regulation RD 31/2009) relative to C. Only the C3 treatment altered the chemical composition of the tubers (specifically, it increased the content in reducing sugars). Therefore, the compost is useful as a fertilizer for organic potato crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Bande-Castro M, Gómez-Sánchez R, Sainz M, López-Mosquera M (2010) Soil fertility and forage yield in a maize-Italian ryegrass rotation fertilized with pelletized broiler litter. In: Grassland in a changing world. Proceedings of the 23rd General Meeting of the European Grassland Federation, Kiel, Germany, 29th August-2nd September 2010. Mecke Druck und Verlag. pp 196–198

  • Borah MN, Milthorpe FL (1962) Growth of the potato as influenced by temperature. Indian J Plant Physiol 5:53–72

    Google Scholar 

  • Brazinskiene V, Gaivelyte K (2016) Organic potatoes. In: Singh J, Kaur L (eds) Advances in potato chemistry and technology. Academic Press, London, pp 315–337

    Chapter  Google Scholar 

  • Burlingame B, Mouille B, Charrondiere R (2009) Nutrients, bioactive non-nutrients and anti-nutrients in potatoes. J Food Compos Anal 22:494–502

    Article  CAS  Google Scholar 

  • Casañas Rivero A, Suárez Hernández P, Rodrı́guez Rodrı́guez EM, Darias Martı́n J, Dı́az Romero C (2003) Mineral concentrations in cultivars of potatoes. Food Chem 83:247–253

  • Chapman H, Pratt PF (1997) Métodos de análisis Para suelos, plantas y aguas. Editorial Trillas, Mexico City

    Google Scholar 

  • Domínguez Domínguez M, Barral Silva M, Arias Estevez M, Diaz-Fierros Viqueira F, Rubio J, Morgan R, Asins S, Andreu V (2002) Biological soil degradation due to the decrease in the use of organic fertilizers in Galicia (NW of Spain). In: II International Congress of the European Society for Soil Conservation, pp 1511–1523

  • Dow AI (1980) Critical nutrient ranges in Northwest crops. WREP-Western Region Extension. Publication-Cooperative Extension Service (USA). No 43

  • EC Council 64/2006 (2006) Commission decision 64/2006, establishing revised ecological criteria and the related assessment and verification requirements for the award of the community eco-label to growing media. Off J Eur Communities L32:137–143

    Google Scholar 

  • EC Council 799/ 2006 (2006) Commission decision 799/2006, establishing revised ecological criteria and the related assessment and verification requirements for the award of the community eco-label to soil improvers. Off J Eur Communities L325:38–34

    Google Scholar 

  • FAOSTAT (2015) Food and Agriculture Organization of the United Nations Statistics. http://www.fao.org/faostat/en/#home Searched on 1 June 2016

  • Fiorillo A, Rouphael Y, Cardarelli M, Saccardo F, Colla G, Cirica B (2004) Yield and disease tolerance of potato cultivars grown under conventional and organic cultural management practices. Acta Hortic 684:79–84

    Google Scholar 

  • Gil-Sotres F, Trasar-Cepeda C, Leirós M, Seoane S (2005) Different approaches to evaluating soil quality using biochemical properties. Soil Biol Biochem 37:877–887

    Article  CAS  Google Scholar 

  • Guitián F, Carballas T (1976) Técnicas de análisis de suelos. Pico Sacro, Santiago de Compostela, Spain

  • Gupta A, Saxena M (1976) Evaluation of leaf analysis as a guide to nitrogen and phosphorus fertilization of potato (Solanum tuberosum L). Plant Soil 44:597–605

    Article  Google Scholar 

  • Hamouz K, Lachman J, Dvorak P, Pivec V (2005) The effect of ecological growing on the potatoes yield and quality. Plant Soil Environ 51:397

    Article  Google Scholar 

  • Hasbún J, Esquivel P, Brenes A, Alfaro I (2009) Propiedades físico-químicas y parámetros de calidad Para uso industrial de cuatro variedades de papa. Agron Costarricamerica 33(1):77–89

    Google Scholar 

  • Horrigan L, Lawrence RS, Walker P (2002) How sustainable agriculture can address the environmental and human health harms of industrial agriculture. Environm Health Persp 110:445–456

    Article  Google Scholar 

  • Horwitz W, Latimer G W (1980) Official methods of analysis: AOAC. Arlington, VA, Washington DC

  • IGME (1974) Mapa Geológico de España 1: 50000, hoja n° 97 (Guntín)

  • Illera-Vives M, Labandeira SS, López-Mosquera M (2013) Production of compost from marine waste: evaluation of the product for use in ecological agriculture. J Appl Phycol 25:1395–1403

    Article  Google Scholar 

  • Illera-Vives M, López-Fabal A, López-Mosquera ME, Ribeiro HM (2015a) Mineralization dynamics in soil fertilized with seaweed–fish waste compost. J Sci Food Agr 95:3047–3054

    Article  CAS  Google Scholar 

  • Illera-Vives M, Seoane Labandeira S, Brito LM, López-Fabal A, López-Mosquera ME (2015b) Evaluation of compost from seaweed and fish waste as a fertilizer for horticultural use. Sci Hortic 186:101–107

    Article  CAS  Google Scholar 

  • IUSS Working Group (2006) World reference base for soil resources. World Soil Resources Report, 103

  • Järvan M, Edesi L (2009) The effect of cultivation methods on the yield and biological quality of potato. Agron Res 7(Special Issue 1):289–299

    Google Scholar 

  • Jones C, McConnell C, Coleman K, Cox P, Falloon P, Jenkinson D, Powlson D (2005) Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil. Glob Change Biol 11:154–166

    Article  Google Scholar 

  • Lombardo S, Pandino G, Mauromicale G (2013) The influence of growing environment on the antioxidant and mineral content of “early” crop potato. J Food Compos Anal 32:28–35

    Article  CAS  Google Scholar 

  • Lopez-Mosquera M, Pazos P (1997) Effects of seaweed on potato yields and soil chemistry. Biol Agric Hort 14:199–205

    Article  Google Scholar 

  • Lopez-Mosquera M, Cabaleiro F, Sainz M, López-Fabal A, Carral E (2008) Fertilizing value of broiler litter: effects of drying and pelletizing. Bioresource Technol 99:5626–5633

    Article  CAS  Google Scholar 

  • Lorenz O, Tyler, K (1978) Plant-tissue analysis of vegetable crops. Calif Agric Experiment Stn Bull 21–24

  • Mackay DC, Maceache C, Bishop RF (1966) Optimum nutrient levels in potato leaves (Solanum tuberosum L). Soil Sci Soc Am Proc 30:73–76

    Article  Google Scholar 

  • Mader P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697

    Article  CAS  PubMed  Google Scholar 

  • Magdoff F, Weil RR (2004) Soil organic matter in sustainable agriculture. CRC Press, London

    Book  Google Scholar 

  • Maggio A, Carillo P, Bulmetti GS, Fuggi A, Barbieri G, De Pascale S (2008) Potato yield and metabolic profiling under conventional and organic farming. Eur J Agron 28:343–350

    Article  CAS  Google Scholar 

  • MAGRAMA (2013) Anuario de Estadística 2012 Ministerio de Medio Ambiente, Medio Rural y Marino

  • MAGRAMA (2016) Anuario de Estadística 2015 Ministerio de Medio Ambiente, Medio Rural y Marino

  • Manlay RJ, Feller C, Swift M (2007) Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems. Agric Ecosyst Environ 119:217–233

    Article  Google Scholar 

  • Mărghitaş M, Toader C, Mihai M, Moldovan L (2011) Effects of physical soil traits and organo-mineral fertilization on potato production in the Apuseni MTS area. Res J Agri Sci 43:91–99

    Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Moulin A, Cohen Y, Alchanatis V, Tremblay N, Volkmar K (2012) Yield response of potatoes to variable nitrogen management by landform element and in relation to petiole nitrogen–a case study. Can J Plant Sci 92:771–781

    Article  Google Scholar 

  • Olsen S, Sommers L (1982) Phosphorus. In: Page AL (ed) Methods of Soil Analysis Part 2 . American Society of Agronomy, pp 403–430

  • Pedreschi F (2009) Fried and dehydrated potato products. In: Jaspreet S, Lovedeep K (eds) Advances in potato chemistry and technology. Academic Press, USA, pp 319–337

    Chapter  Google Scholar 

  • Pedreschi F, Bunger A, Skurtys O, Allen P, Rojas X (2012) Grading of potato chips according to their sensory quality determined by color. Food Bioprocess Technol 5:2401–2408

    Article  Google Scholar 

  • Peech M, Alexander LT, Dean LA, Reed JF (1947) Methods of soil analysis for soil-fertility investigations. Circ. No. 757, USDA. U.S. Gov. Print. Office, Washington, DC

  • Peshin A, Singh B (1999) Biochemical composition of potato tubers as influenced by higher nitrogen application. J Indian Potato Assoc 26:145–147

    Google Scholar 

  • RD 31/2009 (2009) de 16 de enero, por el que se aprueba la norma de calidad comercial para las patatas de consumo en el mercado nacional, 21, 8175–8182

  • RD 506/2013 (2013) de 28 de junio, sobre productos fertilizantes, 164, 51119–51207

  • Reeves D (1997) The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Tillage Res 43:131–167

    Article  Google Scholar 

  • Roinila P, Vaisanen J, Granstedt A, Kunttu S (2003) Effects of different organic fertilization practices and mineral fertilization on potato quality. Biolo Agric Hortic 21:165–194

    Article  Google Scholar 

  • Rousselle P, Robert Y, Crosnier J (1998) La patata: producción, mejora, plagas y enfermedades, utilización. Institut National de la Recherche Agronomique, Paris

    Google Scholar 

  • Singh J, Kaur L (eds) (2016) Advances in potato chemistry and technology. Academic Press, London

    Google Scholar 

  • Thomas R, Sheard R, Moyer J (1967) Comparison of conventional and automated procedures for nitrogen, phosphorus, and potassium analysis of plant material using a single digestion. Agron J 59:240–243

    Article  CAS  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  CAS  PubMed  Google Scholar 

  • Trasar-Cepeda C, Leiros C, Gil-Sotres F, Seoane S (1997) Towards a biochemical quality index for soils: an expression relating several biological and biochemical properties. Biol Fert Soils 26:100–106

    Article  Google Scholar 

  • Von Scheele C, Svensson G, Rasmusson J (1937) Die Bestimmung des Stärkegehalts und der Trockensubstanz der Kartoffel mit Hilfe des spezifischen Gewichts. Landwirtsch Versuchsstn 127:67–96

    Google Scholar 

  • Walworth JL, Muniz J (1993) A compendium of tissue nutrient concentrations for field-grown potatoes. Am Potato J 70:579–597

    Article  CAS  Google Scholar 

  • Warman PR, Havard K (1998) Yield, vitamin and mineral contents of organically and conventionally grown potatoes and sweet corn. Agric Ecosyst Environ 68:207–216

    Article  CAS  Google Scholar 

  • Westermann D, Kleinkopf G (1985) Phosphorus relationships in potato plants. Agron J 77:490–494

    Article  CAS  Google Scholar 

  • Willer H, Kilcher L (2011) The world of organic agriculture: statistics and emerging trends 2011: Bonn: International Federation of Organic Agriculture Movements (IFOAM). Research Institute of Organic Agriculture (FiBL), Switzerland

    Google Scholar 

  • Zdruli P, Jones RJ, Montanarella L (2004) Organic matter in the soils of southern Europe. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from Xunta de Galicia (Projects PGIDT05TAM097E and 09MRU016291PR, and a post-graduate grant for Marta Illera-Vives).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Illera-Vives.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Illera-Vives, M., Seoane Labandeira, S., Iglesias Loureiro, L. et al. Agronomic assessment of a compost consisting of seaweed and fish waste as an organic fertilizer for organic potato crops. J Appl Phycol 29, 1663–1671 (2017). https://doi.org/10.1007/s10811-017-1053-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-017-1053-2

Keywords

Navigation