Skip to main content
Log in

LiCl-enhanced capacitive humidity-sensing properties of cadmium sulfide grown on silicon nanoporous pillar array

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The extensive application of humidity sensors has greatly stimulated the study on high-performance humidity-sensing materials. In the paper, we report that a prototype humidity sensor was prepared by growing cadmium sulfide (CdS) on silicon nanoporous pillar array (Si-NPA) through a successive ionic layer adsorption and reaction method followed by immersing the samples in the solution of lithium chloride (LiCl). It was demonstrated that through the immersion treatment, the humidity-sensing properties including the response and its linearity, response and recovery time, hysteresis, and measuring reproducibility and stability were improved significantly. These results indicated that LiCl-immersed CdS/Si-NPA might be a promising material for fabricating humidity sensors applied to medium and low humidity range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Tomer VK, Duhan S (2016) A facile nanocasting synthesis of mesoporous Ag-doped SnO2 nanostructures with enhanced humidity sensing performance. Sensors Actuators 223:750–760. doi:10.1016/j.snb.2015.09.139

    Article  Google Scholar 

  2. Yao Y, Xue Y (2016) Influence of the oxygen content on the humidity sensing properties of functionalized graphene films based on bulk acoustic wave humidity sensors. Sensors Actuators 222:755–762. doi:10.1016/j.snb.2015.08.121

    Article  Google Scholar 

  3. Zouaoui MJ, Nait-Ali B, Glandut N, Smith DS (2016) Effect of humidity on the dielectric constant and electrical impedance of mesoporous zirconia ceramics. J Eur Ceram Soc 36:163–169. doi:10.1016/j.jeurceramsoc.2015.09.008

    Article  Google Scholar 

  4. Tomer VK, Devi S, Malik R, Nehra SP, Duhan S (2016) Fast response with high performance humidity sensing of Ag-SnO2/SBA-15 nanohybrid sensors. Microporous Mesoporous Mater 219:240–248. doi:10.1016/j.micromeso.2015.08.016

    Article  Google Scholar 

  5. Liu Y, Huang H, Wang L, Cai D, Liu B, Wang D, Li Q, Wang T (2016) Electrospun CeO2 nanoparticles/PVP nanofibers based high-frequency surface acoustic wave humidity sensor. Sensors Actuators 223:730–737. doi:10.1016/j.snb.2015.09.148

    Article  Google Scholar 

  6. Gao R, D-f Lu, Cheng J, Jiang Y, Jiang L, Z-m Qi (2016) Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide. Sensors Actuators 222:618–624. doi:10.1016/j.snb.2015.08.108

    Article  Google Scholar 

  7. Liang S, He X, Wang F, Geng W, Fu X, Ren J, Jiang X (2015) Highly sensitive humidity sensors based on LiCl-Pebax 2533 composite nanofibers via electrospinning. Sensors Actuators 208:363–368. doi:10.1016/j.snb.2014.11.035

    Article  Google Scholar 

  8. Zhang T, Wang R, Geng WC, Li XT, Qi Q, He Y, Wang SJ (2008) Study on humidity sensing properties based on composite materials of Li-doped mesoporous silica A-SBA-15. Sensors Actuators 128:482–487. doi:10.1016/j.snb.2007.07.012

    Article  Google Scholar 

  9. Wang LJ, Li D, Wang R, He Y, Qi Q, Wang Y, Zhang T (2008) Study on humidity sensing property based on Li-doped mesoporous silica MCM-41. Sensors Actuators 133:622–627. doi:10.1016/j.snb.2008.03.028

    Article  Google Scholar 

  10. Sikarwar S, Yadav BC (2015) Opto-electronic humidity sensor: a review. Sensors and Actuators 233:54–70. doi:10.1016/j.sna.2015.05.007

    Article  Google Scholar 

  11. Yamazoe N (1986) Humidity sensors: principles and applications. Sensors Actuators 10:379–398

    Article  Google Scholar 

  12. Farahani H, Wagiran R, Hamidon MN (2014) Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 14:7881–7939. doi:10.3390/s140507881

    Article  Google Scholar 

  13. Buvailo AI, Xing Y, Hines J, Dollahon N, Borguet E (2011) TiO2/LiCl-based nanostructured thin film for humidity sensor applications. ACS Appl Mater Interfaces 3:528–533. doi:10.1021/am1011035

    Article  Google Scholar 

  14. Zhang DZ, Sun YE, Li P, Zhang Y (2016) Facile fabrication of MoS2-modified SnO2 hybrid nanocomposite for ultrasensitive humidity sensing. ACS Appl Mater Interfaces 8:14142–14149. doi:10.1021/acsami.6b02206

    Article  Google Scholar 

  15. Zhang DZ, Tong J, Xia BK, Xue QZ (2014) Ultrahigh performance humidity sensor based on layer-by-layer self-assembly of graphene oxide/polyelectrolyte nanocomposite film. Sensors Actuators 203:263–270. doi:10.1016/j.snb.2014.06.116

    Article  Google Scholar 

  16. Song XF, Qi Q, Zhang T, Wang C (2009) A humidity sensor based on KCl-doped SnO2 nanofibers. Sensors Actuators 138:368–373. doi:10.1016/j.snb.2009.02.027

    Article  Google Scholar 

  17. Gu L, Zheng K, Zhou Y, Li J, Mo X, Patzke GR, Chen G (2011) Humidity sensors based on ZnO/TiO2 core/shell nanorod arrays with enhanced sensitivity. Sensors Actuators 159:1–7. doi:10.1016/j.snb.2010.12.024

    Article  Google Scholar 

  18. Asefa T, Duncan CT, Sharma KK (2009) Recent advances in nanostructured chemosensors and biosensors. Analyst 134:1980–1990. doi:10.1039/b911965p

    Article  Google Scholar 

  19. Li Z, Zhang H, Zheng W, Wang W, Huang H, Wang C, MacDiarmid AG, Wei Y (2008) Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers. J Am Chem Soc 130:5036–5037. doi:10.1021/ja800176s

    Article  Google Scholar 

  20. Yang Z, Guo L, Zu B, Guo Y, Xu T, Dou X (2014) CdS/ZnO core/shell nanowire-built films for enhanced photodetecting and optoelectronic gas-sensing applications. Adv Opt Mater 2:738–745. doi:10.1002/adom.201400086

    Article  Google Scholar 

  21. Yadava L, Verma R, Dwivedi R (2010) Sensing properties of CdS-doped tin oxide thick film gas sensor. Sensors Actuators 144:37–42. doi:10.1016/j.snb.2009.10.013

    Article  Google Scholar 

  22. Smyntyna VA, Golovanov V, Kashulis S, Mattogno G, Viticoli S (1994) Dependence of sensitivity and reproducibility of CdS oxygen sensors. Sensors Actuators 18–19:460–463. doi:10.1016/0925-4005(93)01038-6

    Article  Google Scholar 

  23. Smyntyna VA, Gerasutenko V, Kashulis S, Mattogno G, Reghini S (1994) The causes of thickness dependence of CdSe and CdS gas-sensor sensitivity to oxygen. Sensors Actuators 18–19:464–465. doi:10.1016/0925-4005(93)01039-7

    Article  Google Scholar 

  24. Lantto V, Golovanov V (1995) A comparison of conductance behaviour between SnO2 and CdS gas-sensitive films. Sensors Actuators 24–25:614–618. doi:10.1016/0925-4005(95)85135-6

    Article  Google Scholar 

  25. Demir R, Okur S, Seker M, Zor M (2011) Humidity sensing properties of CdS nanoparticles synthesized by chemical bath deposition method. Ind Eng Chem Res 50:5606–5610. doi:10.1021/ie1024276

    Article  Google Scholar 

  26. Du L, Zhang Y, Lei Y, Zhao H (2014) Synthesis of high-quality CdS nanowires and their application as humidity sensors. Mater Lett 129:46–49. doi:10.1016/j.matlet.2014.05.002

    Article  Google Scholar 

  27. Demir R, Okur S, Seker M (2012) Electrical characterization of CdS nanoparticles for humidity sensing applications. Ind Eng Chem Res 51:3309–3313. doi:10.1021/ie201509a

    Article  Google Scholar 

  28. Wang W, Li Z, Liu L, Zhang H, Zheng W, Wang Y, Huang H, Wang Z, Wang C (2009) Humidity sensor based on LiCl-doped ZnO electrospun nanofibers. Sensors Actuators 141:404–409. doi:10.1016/j.snb.2009.06.029

    Article  Google Scholar 

  29. Zhao H, Liu S, Wang R, Zhang T (2015) Humidity-sensing properties of LiCl-loaded 3D cubic mesoporous silica KIT-6 composites. Mater Lett 147:54–57. doi:10.1016/j.matlet.2015.01.154

    Article  Google Scholar 

  30. Xu HJ, Li XJ (2008) Silicon nanoporous pillar array: a silicon hierarchical structure with high light absorption and triple-band photoluminescence. Opt Express 16:2933–2941. doi:10.1364/oe.16.002933

    Article  Google Scholar 

  31. Wang WC, Tian YT, Li K, Lu EY, Gong DS, Li XJ (2013) Capacitive humidity-sensing properties of Zn2SiO4 film grown on silicon nanoporous pillar array. Appl Surf Sci 273:372–376. doi:10.1016/j.apsusc.2013.02.045

    Article  Google Scholar 

  32. Wang HY, Li XJ (2010) Capacitive humidity-sensitivity of carbonized silicon nanoporous pillar array. Mater Lett 64:1268–1270. doi:10.1016/j.matlet.2010.03.005

    Article  Google Scholar 

  33. Dong YF, Li LY, Jiang WF, Wang HY, Li XJ (2009) Capacitive humidity-sensing properties of electron-beam-evaporated nanophased WO3 film on silicon nanoporous pillar array. Phys E 41:711–714. doi:10.1016/j.physe.2008.11.014

    Article  Google Scholar 

  34. Jiang W, Xiao S, Zhang H, Dong Y, Li X (2007) Capacitive humidity sensing properties of carbon nanotubes grown on silicon nanoporous pillar array. Sci China Ser E 50:510–515. doi:10.1007/s11431-007-0060-y

    Article  Google Scholar 

  35. Jiang WF, Xiao SH, Feng CY, Li HY, Li XJ (2007) Resistive humidity sensitivity of arrayed multi-wall carbon nanotube nests grown on arrayed nanoporous silicon pillars. Sensors Actuators 125:651–655. doi:10.1016/j.snb.2007.03.015

    Article  Google Scholar 

  36. Wang HY, Li XJ (2005) Structural and capacitive humidity sensing properties of nanocrystal magnetite/silicon nanoporous pillar array. Sensors Actuators 110:260–263. doi:10.1016/j.snb.2005.02.004

    Article  Google Scholar 

  37. Wang HY, Wang YQ, Hu QF, Li XJ (2012) Capacitive humidity sensing properties of SiC nanowires grown on silicon nanoporous pillar array. Sensors Actuators 166–167:451–456. doi:10.1016/j.snb.2012.02.087

    Article  Google Scholar 

  38. Wang LL, Wang HY, Wang WC, Li K, Wang XC, Li XJ (2013) Capacitive humidity sensing properties of ZnO cauliflowers grown on silicon nanoporous pillar array. Sensors Actuators 177:740–744. doi:10.1016/j.snb.2012.11.070

    Article  Google Scholar 

  39. Xu YY, Li XJ, He JT, Hu X, Wang HY (2005) Capacitive humidity sensing properties of hydrothermally-etched silicon nano-porous pillar array. Sensors Actuators 105:219–222. doi:10.1016/j.snb.2004.06.004

    Article  Google Scholar 

  40. Li LY, Dong YF, Jiang WF, Ji HF, Li XJ (2008) High-performance capacitive humidity sensor based on silicon nanoporous pillar array. Thin Solid Films 517:948–951. doi:10.1016/j.tsf.2008.07.016

    Article  Google Scholar 

  41. Rabinovich E, Hodes G (2013) Effective bandgap lowering of CdS deposited by successive ionic layer adsorption and reaction. J Phys Chem C 117:1611–1620. doi:10.1021/jp3105453

    Article  Google Scholar 

  42. Nicolau YF (1985) Solution deposition of thin solid compound films by a successive ionic-layer adsorption and reaction process. Appl Surf Sci 22–23:1061–1074

    Article  Google Scholar 

  43. Greenspan L (1977) Humidity fixed points of binary saturated aqueous solutions. J Res Natl Bur Stand A 81:89–96

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (No.61176044) and the Key Research Project for universities of Henan province (No. 15A140005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Jian Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, M.H., Wang, W.C. & Li, X.J. LiCl-enhanced capacitive humidity-sensing properties of cadmium sulfide grown on silicon nanoporous pillar array. J Mater Sci 52, 3841–3848 (2017). https://doi.org/10.1007/s10853-016-0641-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0641-x

Keywords

Navigation