Skip to main content

Advertisement

Log in

Cognitive Enhancement of Numerical and Arithmetic Capabilities: a Mini-Review of Available Transcranial Electric Stimulation Studies

  • Original Article
  • Published:
Journal of Cognitive Enhancement Aims and scope Submit manuscript

An Erratum to this article was published on 10 March 2017

Abstract

Arithmetic capabilities are complex cognitive skills essential for handling requirements of the modern world. At the same time, educational institutions are challenged with math-related problems, e.g., developmental dyscalculia and math anxiety, and also with less severe difficulties of arithmetic understanding. Thus, non-invasive techniques for cognitive enhancement have attracted researchers’ and practitioners’ interest in the fields of education, psychology, and neuroscience. Particularly, studies employing transcranial electric stimulation (tES) in arithmetic learning, problem solving, and performance in numerical tasks and operations have shaped an optimistic perspective of cognitive enhancement in these domains, building on the fronto-parietal correlates of healthy and deficient arithmetic performance and learning. However, the heterogeneity of stimulation approaches in numerical cognition research—with different electrode montages, stimulation protocols, tasks, outcomes, and combinations thereof—may also showcase a variety of parameters relevant more generally to the cognitive domain. Here, we present a short overview of the different tES approaches to enhance numerical and arithmetic capabilities in performance and training within the general framework of cognitive enhancement. We conclude that performance and training gains can be obtained from different strategical tES configurations, but more standardization, better translation between neurodevelopmental perspectives and tES principles, as well as pre-registered and controlled studies in critical populations are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. A PubMed search (tDCS/tRNS AND arithmetic/numerical cognition) identified 34 papers that were manually screened for original results and new cross-referenced studies.

References

  • Antal, A., & Herrmann, C. S. (2016). Transcranial alternating current and random noise stimulation: possible mechanisms. Neural Plasticity. doi:10.1155/2016/3616807.

    PubMed  PubMed Central  Google Scholar 

  • Arsalidou, M., & Taylor, M. J. (2011). Is 2+2=4? meta-analyses of brain areas needed for numbers and calculations. NeuroImage, 54, 2382–93. doi:10.1016/j.neuroimage.2010.10.009.

    Article  PubMed  Google Scholar 

  • Artemenko, C., Moeller, K., Huber, S., & Klein, E. (2015). Differential influences of unilateral tDCS over the intraparietal cortex on numerical cognition. Frontiers in Human Neuroscience, 9, 110. doi:10.3389/fnhum.2015.00110.

    Article  PubMed  PubMed Central  Google Scholar 

  • Batsikadze, G., Moliadze, V., Paulus, W., et al. (2013). Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. Journal of Physiology, 591, 1987–2000. doi:10.1113/jphysiol.2012.249730.

    Article  PubMed  PubMed Central  Google Scholar 

  • Battleday, R. M., Muller, T., Clayton, M. S., & Cohen Kadosh, R. (2014). Mapping the mechanisms of transcranial alternating current stimulation: a pathway from network effects to cognition. Front Psychiatry, 5, 162. doi:10.3389/fpsyt.2014.00162.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bikson, M., & Rahman, A. (2013). Origins of specificity during tDCS: anatomical, activity-selective, and input-bias mechanisms. Frontiers in Human Neuroscience, 7, 688. doi:10.3389/fnhum.2013.00688.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bikson, M., Datta, A., Rahman, A., & Scaturro, J. (2010). Electrode montages for tDCS and weak transcranial electrical stimulation: role of “return” electrode’s position and size. Clinical Neurophysiology, 121(1), 1976–1978. doi:10.1097/MPG.0b013e3181a15ae8.Screening.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bynner, J., & Parsons, S. (1997). Does numeracy matter? evidence from the national child development study on the impact of poor numeracy on adult life. London: Basic Skills Agency, Commonwealth House, London WC1A 1NU.

    Google Scholar 

  • Cappelletti, M., Gessaroli, E., Hithersay, R., et al. (2013). Transfer of cognitive training across magnitude dimensions achieved with concurrent brain stimulation of the parietal lobe. Journal of Neuroscience, 33, 14899–14907. doi:10.1523/JNEUROSCI.1692-13.2013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaieb, L., Antal, A., & Paulus, W. (2015). Transcranial random noise stimulation-induced plasticity is NMDA-receptor independent but sodium-channel blocker and benzodiazepines sensitive. Frontiers in Neuroscience, 9, 125. doi:10.3389/fnins.2015.00125.

    Article  PubMed  PubMed Central  Google Scholar 

  • Clemens, B., Jung, S., Zvyagintsev, M., et al. (2013). Modulating arithmetic fact retrieval: a single-blind, sham-controlled tDCS study with repeated fMRI measurements. Neuropsychologia, 51, 1279–1286. doi:10.1016/j.neuropsychologia.2013.03.023.

    Article  PubMed  Google Scholar 

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). New Jersey: Lawrence Erlbaum Associates, Inc.

    Google Scholar 

  • Cohen Kadosh, R., Soskic, S., Iuculano, T., et al. (2010). Modulating neuronal activity produces specific and long-lasting changes in numerical competence. Current Biology, 20, 2016–2020. doi:10.1016/j.cub.2010.10.007.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen Kadosh, R., Levy, N., O’Shea, J., et al. (2012). The neuroethics of non-invasive brain stimulation. Current Biology, 22, R108–11. doi:10.1016/j.cub.2012.01.013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis, N. J. (2014). Transcranial stimulation of the developing brain: a plea for extreme caution. Frontiers in Human Neuroscience, 8, 8–11. doi:10.3389/fnhum.2014.00600.

    Article  Google Scholar 

  • Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487–506. doi:10.1080/02643290244000239.

    Article  PubMed  Google Scholar 

  • Dockery, C. A., Hueckel-Weng, R., Birbaumer, N., & Plewnia, C. (2009). Enhancement of planning ability by transcranial direct current stimulation. Journal of Neuroscience, 29, 7271–7. doi:10.1523/JNEUROSCI.0065-09.2009.

    Article  PubMed  Google Scholar 

  • Duecker, F., & Sack, A. T. (2015). Rethinking the role of sham TMS. Frontiers in Psychology, 6, 1–5. doi:10.3389/fpsyg.2015.00210.

    Article  Google Scholar 

  • Fertonani, A., & Miniussi, C. (2016). Transcranial electrical stimulation: what we know and do not know about mechanisms. Neuroscience. doi:10.1177/1073858416631966.

    Google Scholar 

  • Gill, J., Shah-basak, P. P., & Hamilton, R. (2015). It’s the thought that counts: examining the task-dependent effects of transcranial direct current stimulation on executive function. Brain Stimulation, 8, 253–259. doi:10.1016/j.brs.2014.10.018.

    Article  PubMed  Google Scholar 

  • Grabner, R. H., Rütsche, B., Ruff, C. C., & Hauser, T. U. (2015). Transcranial direct current stimulation of the posterior parietal cortex modulates arithmetic learning. European Journal of Neuroscience, 42, 1667–1674. doi:10.1111/ejn.12947.

    Article  PubMed  Google Scholar 

  • Harty, S., Sella, F., & Cohen Kadosh, R. (2017). Mind the brain: the mediating and moderating role of neurophysiology. Trends Cognitive Science.

  • Hauser, T. U., Rotzer, S., Grabner, R. H., et al. (2013). Enhancing performance in numerical magnitude processing and mental arithmetic using transcranial direct current stimulation (tDCS). Frontiers in Human Neuroscience, 7, 244. doi:10.3389/fnhum.2013.00244.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hauser, T. U., Rütsche, B., Wurmitzer, K., et al. (2016). Neurocognitive effects of transcranial direct current stimulation in arithmetic learning and performance: a simultaneous tDCS-fMRI study. Brain Stimulation. doi:10.1016/j.brs.2016.07.007.

    PubMed  Google Scholar 

  • Ho, K. A., Taylor, J. L., Chew, T., et al. (2016). The effect of transcranial direct current stimulation (tDCS) electrode size and current intensity on motor cortical excitability: evidence from single and repeated sessions. Brain Stimulation, 9, 1–7. doi:10.1016/j.brs.2015.08.003.

    Article  PubMed  Google Scholar 

  • Holmes, J., Byrne, E. M., Gathercole, S. E., et al. (2016). Transcranial random noise stimulation does not enhance the effects of working memory training. Journal Cognitive Neuroscience, 28, 1471–1483. doi:10.1162/jocn_a_00993.

    Article  Google Scholar 

  • Houser, R., Thoma, S., & Stanton, M. (2014). The effect of transcranial direct current stimulation (tDCS) on learning and performing statistical calculations. Journal of Artic Support Nul l Hypothesis, 11, 1–10.

    Google Scholar 

  • Houser, R., Thoma, S., Fonseca, D., et al. (2015). Enhancing statistical calculation with transcranial direct current stimulation (tDCS) to the left intra-parietal sulcus (IPS). Trends Neuroscience Education, 4, 98–101. doi:10.1016/j.tine.2015.07.002.

    Article  Google Scholar 

  • Iuculano, T., & Cohen Kadosh, R. (2013). The mental cost of cognitive enhancement. Journal of Neuroscience, 33, 4482–4486. doi:10.1523/JNEUROSCI.4927-12.2013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Iuculano, T., & Cohen Kadosh, R. (2014). Preliminary evidence for performance enhancement following parietal lobe stimulation in developmental dyscalculia. Frontiers in Human Neuroscience, 8, 38. doi:10.3389/fnhum.2014.00038.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacobson, L., Koslowsky, M., & Lavidor, M. (2012). tDCS polarity effects in motor and cognitive domains: a meta-analytical review. Experimental Brain Research, 216, 1–10. doi:10.1007/s00221-011-2891-9.

    Article  PubMed  Google Scholar 

  • Kaufmann, L., Mazzocco, M. M., Dowker, A., et al. (2013). Dyscalculia from a developmental and differential perspective. Frontiers in Psychology, 4, 1–5. doi:10.3389/fpsyg.2013.00516.

    Article  Google Scholar 

  • Klein, E., Mann, A., Huber, S., et al. (2013). Bilateral bi-cephalic tDCS with two active electrodes of the same polarity modulates bilateral cognitive processes differentially [corrected]. PLoS One, 8, e71607. doi:10.1371/journal.pone.0071607.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klein, E., Suchan, J., & Moeller, K., et al (2014). Considering structural connectivity in the triple code model of numerical cognition: differential connectivity for magnitude processing and arithmetic facts. Brain Structural Function 1–17. doi: 10.1007/s00429-014-0951-1.

  • Knops, A., Nuerk, H.-C., Sparing, R., et al. (2006). On the functional role of human parietal cortex in number processing: how gender mediates the impact of a virtual lesion induced by rTMS. Neuropsychologia, 44, 2270–2283.

    Article  PubMed  Google Scholar 

  • Krause, B., & Cohen Kadosh, R. (2013). Can transcranial electrical stimulation improve learning difficulties in atypical brain development? A future possibility for cognitive training. Developmental Cognitive Neuroscience, 6, 176–194. doi:10.1016/j.dcn.2013.04.001.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, L. M., Leech, R., Scott, G., et al. (2015). The effect of oppositional parietal transcranial direct current stimulation on lateralized brain functions. European Journal of Neuroscience, 42, 2904–2914. doi:10.1111/ejn.13086.

    Article  PubMed  PubMed Central  Google Scholar 

  • Looi, C.Y., & Cohen Kadosh, R. (2016). Brain stimulation, mathematical and numerical training: contribution of core and non-core skills. In: Progress in brain research. 353–88.

  • Looi, C. Y., Duta, M., Brem, A.-K., et al. (2016). Combining brain stimulation and video game to promote long-term transfer of learning and cognitive enhancement. Scientific Reports, 6, 22003. doi:10.1038/srep22003.

    Article  PubMed  PubMed Central  Google Scholar 

  • Looi, C. Y., Thompson, J., Krause, B., & Cohen Kadosh, R. (2016b). The Neuroscience of mathematical cognition and learning. Paris.

  • Matejko, A. A., & Ansari, D. (2015). Drawing connections between white matter and numerical and mathematical cognition: a literature review. Neuroscience & Biobehavioral Reviews, 48, 35–52. doi:10.1016/j.neubiorev.2014.11.006.

    Article  Google Scholar 

  • Miranda, P. C., Faria, P., & Hallett, M. (2009). What does the ratio of injected current to electrode area tell us about current density in the brain during tDCS? Clinical Neurophysiology, 120, 1183–1187. doi:10.1016/j.clinph.2009.03.023.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moliadze, V., Antal, A., & Paulus, W. (2010). Electrode-distance dependent after-effects of transcranial direct and random noise stimulation with extracephalic reference electrodes. Clinical Neurophysiology, 121, 2165–71. doi:10.1016/j.clinph.2010.04.033.

    Article  PubMed  Google Scholar 

  • Moliadze, V., Fritzsche, G., & Antal, A. (2014). Comparing the efficacy of excitatory transcranial stimulation methods measuring motor evoked potentials. Neural Plast 2014: Article ID 837141. doi: 10.1155/2014/837141.

  • Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215, 1519–1520. doi:10.1038/2151519a0.

    Article  PubMed  Google Scholar 

  • Mulquiney, P. G., Hoy, K. E., Daskalakis, Z. J., & Fitzgerald, P. B. (2011). Improving working memory: exploring the effect of transcranial random noise stimulation and transcranial direct current stimulation on the dorsolateral prefrontal cortex. Clinical Neurophysiology, 122, 2384–2389. doi:10.1016/j.clinph.2011.05.009.

    Article  PubMed  Google Scholar 

  • Nasseri, P., Nitsche, M. A., & Ekhtiari, H. (2015). A framework for categorizing electrode montages in transcranial direct current stimulation. Frontiers in Human Neuroscience, 9, 1–5. doi:10.3389/fnhum.2015.00054.

    Article  Google Scholar 

  • Nieder, A. (2016). The neuronal code for number. Nature Reviews Neuroscience. doi:10.1038/nrn.2016.40.

    PubMed  Google Scholar 

  • Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology, 527(Pt 3), 633–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ozen, S., Sirota, A., Belluscio, M. A., et al. (2010). Transcranial electric stimulation entrains cortical neuronal populations in rats. Journal of Neuroscience, 30, 11476–11485. doi:10.1523/JNEUROSCI.5252-09.2010.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pasqualotto, A. (2016). Transcranial random noise stimulation benefits arithmetic skills. Neurobiology of Learning and Memory, 133, 7–12. doi:10.1016/j.nlm.2016.05.004.

    Article  PubMed  Google Scholar 

  • Plewnia, C., Schroeder, P. A., Kunze, R., et al. (2015). Keep calm and carry on: improved frustration tolerance and processing speed by transcranial direct current stimulation (tDCS). PLoS One, 10, e0122578. doi:10.1371/journal.pone.0122578.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pope, P. A., & Miall, R. C. (2012). Task-specific facilitation of cognition by cathodal transcranial direct current stimulation of the cerebellum. Brain Stimulation, 5, 84–94. doi:10.1016/j.brs.2012.03.006.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pope, P.A., Brenton, J.W., & Miall, R.C. (2015). Task-specific facilitation of cognition by anodal transcranial direct current stimulation of the prefrontal cortex. Cerebral Cortex 1–8. doi: 10.1093/cercor/bhv094.

  • Popescu, T., Krause, B., Terhune, D. B., et al. (2016). Transcranial random noise stimulation mitigates increased difficulty in an arithmetic learning task. Neuropsychologia, 81, 255–264. doi:10.1016/j.neuropsychologia.2015.12.028.

    Article  PubMed  PubMed Central  Google Scholar 

  • Priori, A., Hallett, M., & Rothwell, J. C. (2009). Repetitive transcranial magnetic stimulation or transcranial direct current stimulation? Brain Stimulation, 2, 241–245. doi:10.1016/j.brs.2009.02.004.

    Article  PubMed  Google Scholar 

  • Rahman, A., Reato, D., Arlotti, M., et al. (2013). Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects. Journal of Physiology, 591, 2563–78. doi:10.1113/jphysiol.2012.247171.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rütsche, B., Hauser, T. U., Jäncke, L., & Grabner, R. H. (2015). When problem size matters: differential effects of brain stimulation on arithmetic problem solving and neural oscillations. PLoS One, 10, 1–17. doi:10.1371/journal.pone.0120665.

    Article  Google Scholar 

  • Salillas, E., & Semenza, C. (2015). Mapping the brain for math: reversible inactivation by direct cortical electrostimulation and transcranial magnetic stimulation. In R. Cohen Kadosh & A. Dowker (Eds.), The Oxford handbook of numerical cognition (pp. 583–611). New York: Oxford University Press.

    Google Scholar 

  • Sarkar, A., Dowker, A., & Cohen Kadosh, R. (2014). Cognitive enhancement or cognitive cost: trait-specific outcomes of brain stimulation in the case of mathematics anxiety. Journal of Neuroscience, 34, 16605–16610. doi:10.1523/JNEUROSCI.3129-14.2014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schroeder, P.A., & Plewnia, C. (2017). Beneficial effects of cathodal transcranial direct current stimulation (tDCS) on cognitive performance. Journal of Cognitive Enhancement.

  • Schroeder, P. A., Pfister, R., Kunde, W., et al. (2016). Counteracting implicit conflicts by electrical inhibition of the prefrontal cortex. Journal Cognitive Neuroscience, 28, 1737–1748. doi:10.1162/jocn.

    Article  Google Scholar 

  • Silvanto, J., & Pascual-Leone, A. (2008). State-dependency of transcranial magnetic stimulation. Brain Topography, 21, 1–10. doi:10.1007/s10548-008-0067-0.

    Article  PubMed  PubMed Central  Google Scholar 

  • Snowball, A., Tachtsidis, I., Popescu, T., et al. (2013). Long-term enhancement of brain function and cognition using cognitive training and brain stimulation. Current Biology, 23, 987–992. doi:10.1016/j.cub.2013.04.045.

    Article  PubMed  PubMed Central  Google Scholar 

  • Suárez-Pellicioni, M., Núñez-Peña, M. I., & Colomé, À. (2016). Math anxiety: a review of its cognitive consequences, psychophysiological correlates, and brain bases. Cognitive, Affective, & Behavioral Neuroscience, 16, 3–22. doi:10.3758/s13415-015-0370-7.

    Article  Google Scholar 

  • Terney, D., Chaieb, L., Moliadze, V., et al. (2008). Increasing human brain excitability by transcranial high-frequency random noise stimulation. Journal of Neuroscience, 28, 14147–14155. doi:10.1523/JNEUROSCI.4248-08.2008.

    Article  PubMed  Google Scholar 

  • Truong, D. Q., Hüber, M., Xie, X., et al. (2014). Clinician accessible tools for GUI computational models of transcranial electrical stimulation: BONSAI and SPHERES. Brain Stimulation, 7, 521–524. doi:10.1016/j.brs.2014.03.009.Clinician.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tzelgov, J., Yehene, V., Kotler, L., & Alon, A. (2000). Automatic comparisons of artificial digits never compared: learning linear ordering relations. Journal of Experimental Psychology Learning Memory and Cognition, 26, 103–120. doi:10.1037/0278-7393.26.1.103.

    Article  Google Scholar 

  • van der Groen, O., & Wenderoth, N. (2016). Transcranial random noise stimulation of visual cortex: stochastic resonance enhances central mechanisms of perception. Journal of Neuroscience, 36, 5289–98. doi:10.1523/JNEUROSCI.4519-15.2016.

    Article  PubMed  Google Scholar 

  • Vanderhasselt, M.-A., De Raedt, R., Namur, V., et al. (2015). Transcranial electric stimulation and neurocognitive training in clinically depressed patients: a pilot study of the effects on rumination. Program Neuro-Psychopharmacology Biology Psychiatry, 57, 93–99. doi:10.1016/j.pnpbp.2014.09.015.

    Article  Google Scholar 

  • Zamarian, L., Ischebeck, A., & Delazer, M. (2009). Neuroscience of learning arithmetic-evidence from brain imaging studies. Neuroscience & Biobehavioral Reviews, 33, 909–925. doi:10.1016/j.neubiorev.2009.03.005.

    Article  Google Scholar 

Download references

Acknowledgements

Christina Artemenko and Thomas Dresler were funded by the LEAD Graduate School & Research Network (GSC1028), a project of the Excellence Initiative of the German Federal and State Governments, where Hans-Christoph Nuerk is a principal investigator. Hans-Christoph Nuerk’s work was funded by the ScienceCampus Tübingen (cluster 8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Schroeder.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s41465-017-0014-7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schroeder, P.A., Dresler, T., Bahnmueller, J. et al. Cognitive Enhancement of Numerical and Arithmetic Capabilities: a Mini-Review of Available Transcranial Electric Stimulation Studies. J Cogn Enhanc 1, 39–47 (2017). https://doi.org/10.1007/s41465-016-0006-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41465-016-0006-z

Keywords

Navigation