Skip to main content
Log in

Identification of Burrowing Shrimp Food Sources Along an Estuarine Gradient Using Fatty Acid Analysis and Stable Isotope Ratios

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Two species of burrowing shrimp occur in high densities in US West Coast estuaries, the ghost shrimp, Neotrypaea californiensis, and the blue mud shrimp, Upogebia pugettensis. Both species of shrimp are considered ecosystem engineers as they bioturbate and irrigate extensive galleries within the sediment. While their burrows comprise a dominant habitat type in west coast estuaries, little is known about these shrimps’ diet and their role in estuarine food webs. The primary goals of this study were to identify major components of burrowing shrimp diets and detect variation in these diets along an estuarine gradient using combined fatty acid (FA) and stable isotope (SI) analyses. Shrimp and potential food sources including eelgrass blades, epiphytes, Ulva, sedimentary particulate organic matter (SPOM), burrow walls, and particulate organic material (POM) were sampled at different locations within Yaquina Bay, Oregon in August 2012. Both SI and FA analyses indicated differences in food resources assimilated by shrimp along the estuarine gradient. SI values showed that diets for U. pugettensis consisted of carbon sources derived primarily from POM and SPOM, while POM and epiphytes were primary carbon sources for N. californiensis. Shrimp from lower estuarine sites had high levels of 16:1ω7 and 20:5ω3 FAs suggesting their diet is enriched with marine diatoms. Shrimp from upriver showed greater proportion of FA associated with dinoflagellates and terrestrial sources as indicated by a high percentage of C18 polyunsaturated FAs (PUFAs). This is the first study to evaluate diets of these two shrimp species using complimentary FA and SI approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abed-Navandi, D., and P. Dworschak. 2005. Food sources of tropical thalassinidean shrimps: a stable-isotope study. Marine Ecology Progress Series 291: 159–168.

    Article  CAS  Google Scholar 

  • Abed-Navandi, D., H. Koller, and P. Dworschak. 2005. Nutritional ecology of thalassinidean shrimps constructing burrows with debris chambers: the distribution and use of macronutrients and micronutrients. Marine Biology Research 1: 202–215.

    Article  Google Scholar 

  • Alfaro, A.C., F. Thomas, L. Sergent, and M. Duxbury. 2006. Identification of trophic interactions within an estuarine food web (northern New Zealand) using fatty acid biomarkers and stable isotopes. Estuarine, Coastal and Shelf Science 70: 271–286.

    Article  Google Scholar 

  • Antonio, E., and N. Richoux. 2014. Trophodynamics of three decapod crustaceans in a temperate estuary using stable isotope and fatty acid analyses. Marine Ecology Progress Series 504: 193–205.

    Article  Google Scholar 

  • Banas, N.S., B.M. Hickey, and P. MacCready. 2004. Dynamics of Willapa Bay, Washington: a highly unsteady, partially mixed estuary. Journal of Physical Oceanography 34: 2413–2427.

    Article  Google Scholar 

  • Berkenbusch, K., and A. Rowden. 2003. Ecosystem engineering—moving away from “ just-so” stories scaling organisms as ecosystem engineers. New Zealand Journal of Ecology 27: 67–73.

    Google Scholar 

  • Bird, E. 1982. Population dynamics of thalassinidean shrimps and community effects through sediment modification. PhD thesis, University of Maryland, College Park.

  • Boon, P., F. Bird, and S. Bunn. 1997. Diet of the intertidal callianassid shrimps Biffarius areanosus and Trypea australiensis (Decapoda: Thalassinidea) in Western Port (southern Australia), determined with multiple stable-isotope analyses. Marine and Freshwater Research 48: 503–511.

    Article  CAS  Google Scholar 

  • Bosley, K.M., and B.R. Dumbauld. 2011. Use of extractable lipofuscin to estimate age­structure of ghost shrimp populations in west coast estuaries of the USA. Marine Ecology Progress Series 428: 161–176.

    Article  Google Scholar 

  • Brett, M.T. 2014. Resource polygon geometry predicts Bayesian stable isotope mixing model bias. Marine Ecology Progress Series 514: 1–12. doi:10.3354/meps11017.

    Article  Google Scholar 

  • Budge, S.M., and C.C. Parrish. 1998. Lipid biogeochemistry of plankton, settling matter and sediments in Trinity Bay, Newfoundland. II. Fatty acids. Organic Geochemistry 29: 1531–1545.

  • Burt, W.V., and W.B. McAlister. 1959. Recent studies in the hydrography of Oregon Estuaries. Research briefs, Fish Commission of Oregon 7: 14–27.

  • Caraco, N., G. Lampman, J. Cole, K. Limburg, M. Pace, and D. Fischer. 1998. Microbial assimilation of DIN in a nitrogen rich estuary: implications for food quality and isotope studies. Marine Ecology Progress Series 167: 59–71.

    Article  CAS  Google Scholar 

  • Cloern, J.E. 1991. Annual variations in river flow and primary production in the South San Francisco Bay Estuary (USA). In Estuaries and coasts: spatial and temporal intercomparisons, ed. M. Elliot and D. Ducotoy, 91–96. Denmark: Olsen and Olsen publishers.

    Google Scholar 

  • Cloern, J.E., S.Q. Foster, and A.E. Kleckner. 2014. Phytoplankton primary production in the world’s estuarine-coastal ecosystems. Biogeosciences 11: 2477–2501.

    Article  Google Scholar 

  • Coelho, V., R. Cooper, and S. De Almeida Rodrigues. 2000. Burrow morphology and behavior of the mud shrimp Upogebia omissa (Decapoda: Thalassinidea: Upogebiidae). Marine Ecology 200: 229–240.

    Article  Google Scholar 

  • Coffin, R., L. Cifuentes, and P. Eldridge. 1994. The use of stable carbon isotopes to study microbial processes in estuaries. In: Stable isotopes in ecology and environmental science, ed. K. Lajtha and R. H. Michener, 222–240. Oxford:Blackwell.

  • Copeman, L.A., and C.C. Parrish. 2003. Marine lipids in a cold coastal ecosystem: Gilbert Bay, Labrador. Marine Biology 143: 1213–1227.

  • Copeman, L., C. Parrish, R. Gregory, R. Jamieson, J. Wells, and M.J. Whiticar. 2009. Fatty acid biomarkers in coldwater eelgrass meadows: elevated terrestrial input to the food web of age-0 Atlantic cod Gadus morhua. Marine Ecology Progress Series 386: 237–251. doi:10.3354/meps08063.

    Article  CAS  Google Scholar 

  • Copeman, L., B. Laurel, K. Boswell, A. Sremba, K. Klink, R. Heintz, J. Vollenweider, T. Helser, and M. Spencer. 2015. Ontogenetic and spatial variability in trophic biomarkers of juvenile saffron cod (Eleginus gracilis) from the Beaufort, Chukchi and Bering Seas. Polar Biology. doi:10.1007/s00300-015-1792-y.

    Google Scholar 

  • Correll, David. 1978. Estuarine productivity. Bioscience 28: 646–650. doi:10.2307/1307395.

    Article  Google Scholar 

  • D’Andrea, A., and T. Dewitt. 2009. Geochemical ecosystem engineering by the mud shrimp Upogebia pugettensis (Crustacea: Thalassinidae) in Yaquina Bay, Oregon: density-dependent effects on organic matter remineralization and nutrient cycling. Limnology and Oceanography 54: 1911–1932.

    Article  Google Scholar 

  • De Leeuw, J., I. Rijpstra, and P. Nienhuis. 1995. Free and bound fatty acids and hydroxy fatty acids in the living and decomposing eelgrass Zostera marina L. Organic Geochemistry 23: 721–728.

    Article  CAS  Google Scholar 

  • Deegan, L., and R. Garritt. 1997. Evidence for spatial variability in estuarine food webs. Marine Ecology Progress Series 147: 31–47. doi:10.3354/meps147031.

    Article  Google Scholar 

  • DeWitt, T. H., A. F. D’Andrea, C. A. Brown, B. D. Griffen, and P. M. Eldridge. 2004. Impact of burrowing shrimp populations on nitrogen cycling and water quality in western North American temperate estuaries. In Proceedings of the symposium on ecology of large bioturbators in tidal flats and shallow sublittoral sediments—from individual behavior to their role as ecosystem engineers. University of Nagasaki.

  • Dobbs, F., and J.B. Guckert. 1988. Callianassa trilobata (Crustacea: Thalassinidea) influences abundance of meiofauna and biomass, composition, and physiologic state of microbial communities within its burrow. Marine Ecology Progress Series 45: 69–79.

    Article  Google Scholar 

  • Dumbauld, B., D. Holden, and O. Langness. 2008. Do sturgeon limit burrowing shrimp populations in Pacific Northwest estuaries? Environmental Biology of Fishes 83: 283–296. doi:10.1007/s10641-008-9333-y.

    Article  Google Scholar 

  • Dworshak, P. 1987. Feeding behaviour of Upogebia pusilla and Callianassa tyrrhena (Crustacea, Decapoda, Thalassinidea). Investigacion Pesquera 51: 421–429.

    Google Scholar 

  • Falk-petersen, S., T. Dahl, C. Scott, J. Sargent, B. Gulliksen, S. Kwasniewski, H. Hop, and R.-M. Millar. 2002. Lipid biomarkers and trophic linkages between ctenophores and copepods in Svalbard waters. Marine Ecology Progress Series 227: 187–194.

    Article  CAS  Google Scholar 

  • Folch, J., M. Lees, and G.H. Sloane-Stanley. 1957. A simple method for the isolation and purification of total lipids from animal tissues. The Journal of Biologial Chemistry 226: 497–509.

    CAS  Google Scholar 

  • Fritz, C. 2002. A seasonal study of sediment reworking by Neotrypaea californiensis in Yaquina Bay, Oregon. Oregon State University. MS Thesis.

  • Fry, B. 2013. Alternative approaches for solving underdetermined isotope mixing problems. Marine Ecology Progress Series 472: 1–13.

    Article  CAS  Google Scholar 

  • Fry, B., and E. Sherr. 1984. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contributions in Marine Science 27: 13–47.

    CAS  Google Scholar 

  • Galloway, A.W.E., K.H. Britton-Simmons, D.O. Duggins, P.W. Gabrielson, and M.T. Brett. 2012. Fatty acid signatures differentiate marine macrophytes at ordinal and family ranks. Journal of Phycology 48: 956–965. doi:10.1111/j.1529-8817.2012.01173.x.

    Article  Google Scholar 

  • Galloway, A.W.E., M.E. Eisenlord, M.N. Dethier, G.W. Holtgrieve, and M.T. Brett. 2014. Quantitative estimates of isopod resource utilization using a Bayesian fatty acid mixing model. Marine Ecology Progress Series 507: 219–232. doi:10.3354/meps10860.

    Article  Google Scholar 

  • Griffen, B.D., T.H. Dewitt, and C. Langdon. 2004. Particle removal rates by the mud shrimp Upogebia pugettensis, its burrow, and a commensal clam: effects on estuarine phytoplankton abundance. Marine Ecology Progress Series 269: 223–236.

    Article  Google Scholar 

  • Griffis, R.B., and T.H. Suchanek. 1991. A model of burrow architecture and trophic modes in thalassinidean shrimp (Decapoda: Thalassinidea). Marine Ecology Progress Series 79: 171–183.

    Article  Google Scholar 

  • Hartnoll, R.G. 2001. Growth in Crustacea—twenty years on. Hydrobiologia 449: 111–122. doi:10.1023/A:1017597104367.

    Article  Google Scholar 

  • Herman, P.M.J., J.J. Middelburg, J. Widdows, C.H. Lucas, and C.H.R. Heip. 2000. Stable isotopes as trophic tracers: combining field sampling and manipulative labelling of food resources for macrobenthos. Marine Ecology Progress Series 204: 79–92. doi:10.3354/meps204079.

    Article  CAS  Google Scholar 

  • Howe, R.L., A.P. Rees, and S. Widdicombe. 2004. The impact of two species of bioturbating shrimp (Callianassa subterranea and Upogebia deltaura) on sediment denitrification. Journal of the Marine Biological Association of the United Kingdom 84: 629–632.

    Article  Google Scholar 

  • Jackson, Andrew L., Richard Inger, Andrew C. Parnell, and Stuart Bearhop. 2011. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology 80: 595–602. doi:10.1111/j.1365-2656.2011.01806.x.

    Article  Google Scholar 

  • Kanaya, G., S. Takagi, E. Nobata, and E. Kikuchi. 2007. Spatial dietary shift of macrozoobenthos in a brackish lagoon revealed by carbon and nitrogen stable isotope ratios. Marine Ecology Progress Series 345: 117–127. doi:10.3354/meps07025.

    Article  CAS  Google Scholar 

  • Kelly, J.R., and R.E. Scheibling. 2012. Fatty acids as dietary tracers in benthic food webs. Marine Ecology Progress Series 446: 1–22. doi:10.3354/meps09559.

    Article  CAS  Google Scholar 

  • Kentula, M.E., and T.H. DeWitt. 2003. Abundance of seagrass (Zostera marina L.) and macroalgae in relation to the salinity-temperature gradient in Yaquina Bay, Oregon, USA. Estuaries 26: 1130–1141. doi:10.1007/BF02803369.

    Article  Google Scholar 

  • Kharlamenko, V.I., S.I. Kiyashko, A.B. Imbs, and D.I. Vyshkvartzev. 2001. Identification of food sources of invertebrates from the seagrass Zostera marina community using carbon and sulfur stable isotope ratio and fatty acid analyses. Marine Ecology Progress Series 220: 103–117.

    Article  CAS  Google Scholar 

  • Kharlamenko, V.I., S.I. Kiyashko, S.a. Rodkina, and a.B. Imbs. 2008. Determination of food sources of marine invertebrates from a subtidal sand community using analyses of fatty acids and stable isotopes. Russian Journal of Marine Biology 34: 101–109. doi:10.1134/S106307400802003X.

    Article  CAS  Google Scholar 

  • Kinoshita, K., S. Nakayama, and T. Furota. 2003. Life cycle characteristics of the deep-burrowing mud shrimp Upogebia major (Thalassinidea: Upogebiidae) on a tidal flat along the northern coast of Tokyo Bay. Journal of Crustacean Biology 23: 318–327.

    Article  Google Scholar 

  • Kinoshita, K., M. Wada, K. Kogure, and T. Furota. 2008. Microbial activity and accumulation of organic matter in the burrow of the mud shrimp, Upogebia major (Crustacea: Thalassinidea). Marine Biology 153: 277–283. doi:10.1007/s00227-007-0802-1.

    Article  Google Scholar 

  • Kwak, T.J., and J.B. Zedler. 1997. Food web analysis of southern California coastal wetlands using multiple stable isotopes. Oecologia 110: 262–277.

    Article  CAS  Google Scholar 

  • Layman, Craig A., D. Albrey Arrington, Carmen G. Montaña, and David M. Post. 2007. Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88: 42–48. doi:10.1890/0012-9658(2007)88[42:CSIRPF]2.0.CO;2.

    Article  Google Scholar 

  • Layman, Craig A, Marcio S Araujo, Ross Boucek, Caroline M Hammerschlag-Peyer, Elizabeth Harrison, Zachary R Jud, Philip Matich, et al. 2012. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Article. Biological Reviews 87. Blackwell Publishing Ltd: 545–562. doi:10.1111/j.1469-185X.2011.00208.x.

  • Lim, C., H. Ako, C.L. Brown, and K. Hahn. 1997. Growth response and fatty acid composition of juvenile Penaeus vannamei fed different sources of dietary lipid. Aquaculture 151: 143–153. doi:10.1016/S0044-8486(96)01500-1.

    Article  CAS  Google Scholar 

  • Liu, M., L.J. Hou, S.Y. Xu, D.N. Ou, Y. Yang, J. Yu, and Q. Wang. 2006. Organic carbon and nitrogen stable isotopes in the intertidal sediments from the Yangtze Estuary, China. Marine Pollution Bulletin 52: 1625–1633. doi:10.1016/j.marpolbul.2006.06.008.

    Article  CAS  Google Scholar 

  • Lorenzen, C.J. 1967. Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnology and Oceanography 12: 343–346.

    Article  CAS  Google Scholar 

  • Lowe, A. T., A. W. E. Galloway, J. S. Yeung, M. N. Dethier, and D. O. Duggins. 2014. Broad sampling and diverse biomarkers allow characterization of nearshore particulate organic matter. Oikos: 1341–1354. doi:10.1111/oik.01392.

  • MacGinite, G.E. 1934. The natural history of Callianassa californiensis Dana. American Midland Naturalist 15: 166–177.

    Article  Google Scholar 

  • Macginitie, G.E. 1935. Ecological aspects of a California marine estuary. American Midland Naturalist 16: 629–765.

    Article  Google Scholar 

  • Mariotti, A., C. Lancelot, and G. Billen. 1984. Natural isotopic composition of nitrogen as a tracer of origin for suspended matter in the Scheldt estuary. Geochimica et Cosmochimica Acta 48: 549–555.

    Article  CAS  Google Scholar 

  • McCune, B., and J.B. Grace. 2002. Analysis of ecological communities. Gleneden Beach, Oregon: MjM Software Design.

    Google Scholar 

  • Merican, Z.O., and K.F. Shim. 1996. Qualitative requirements of essential fatty acids for juvenile Penaeus monodon. Aquaculture 147: 275–291.

    Article  CAS  Google Scholar 

  • Michener, R. H., and D. M. Schnell. 1994. Stable isotope ratios as tracers in marine aquatic foodwebs. In Stable isotopes in ecology and enviornmental science, ed. Kate Lajtha and R. H. Michener, 138–157.

  • Miller, D.C., R.J. Geider, and H.L. Macintyre. 1996. Microphytobenthos: the ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. II. Role in sediment stability and shallow-water food webs. Estuaries 19: 202–212.

    Article  Google Scholar 

  • Nelson, M.M., C.F. Phleger, and P.D. Nichols. 2002. Seasonal lipid composition in macroalgae of the northeastern Pacific Ocean. Botanica Marina 45: 58–65.

    Article  CAS  Google Scholar 

  • Nickell, L.A., and R.J.A. Atkinson. 1995. Functional morphology of burrows and trophic modes of three thalassinidean shrimp species, and a new approach to the classification of thalassinidean burrow morphology. Marine Ecology Progress Series 128: 181–197.

    Article  Google Scholar 

  • Page, H.M. 1997. Importance of vascular plant and algal production to macro-invertebrate consumers in a southern California salt marsh. Estuarine, Coastal and Shelf Science 45: 823–834. doi:10.1006/ecss.1997.0254.

    Article  Google Scholar 

  • Papaspyrou, S., T. Gregersen, R.P. Cox, M. Thessalou-legaki, and E. Kristensen. 2005. Sediment properties and bacterial community in burrows of the ghost shrimp Pestarella tyrrhena (Decapoda: Thalassinidea). Aquatic Microbial Ecology 38: 181–190.

    Article  Google Scholar 

  • Parnell, A.C., R. Inger, S. Bearhop, and A.L. Jackson. 2010. Source partitioning using stable isotopes: coping with too much variation. PloS One 5(3): e9672. doi:10.1371/journal.pone.0009672.

    Article  Google Scholar 

  • Parrish C.C. 1999. Determination of total lipids, lipid classes and fatty acids in aquatic samples. In: Lipids in freshwater ecosystems. eds. Arts, M., B.C. Wainmann, Springer, New York.

  • Parrish, C.C. 2013. Lipids in marine ecosystems. ISRN Oceanography 2013: 1–16. doi:10.5402/2013/604045.

    Article  Google Scholar 

  • Parrish, C., T.A. Abrajano, S.M. Budge, R.J. Helleur, E.D. Hudson, K. Pulchan, and C. Ramos. 2000. Lipid and phenolic biomarkers in marine ecosystems: analysis and applications. In The handbook of environmental chemistry , ed. P. Wagersky, 193–233. Berling, Heidelberg: Springer.Part D, Marine Chemisty

    Google Scholar 

  • Parrish, C.C., P.D. Nichols, H. Pethybridge, and J.W. Young. 2015. Oecologia 177: 85–95. doi:10.1007/s00442-014-3131-3.

    Article  Google Scholar 

  • Peterson, B.J., and B. Fry. 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18: 293–320. doi:10.1146/annurev.es.18.110187.001453.

    Article  Google Scholar 

  • Peterson, B.J., R.W. Howarth, and R.H. Garritt. 1985. Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs. Science 227: 1361–1363. doi:10.1126/science.227.4692.1361.

    Article  CAS  Google Scholar 

  • Phillips, D.L., and J.W. Gregg. 2001. Uncertainty in source partitioning using stable isotopes. Oecologia 127: 171–179.

    Article  Google Scholar 

  • Phillips, Donald L., Richard Inger, Stuart Bearhop, Andrew L. Jackson, Jonathan W. Moore, Andrew C. Parnell, Brice X. Semmens, and Eric J. Ward. 2014. Best practices for use of stable isotope mixing models in food-web studies. Canadian Journal of Zoology 92: 823–835.

    Article  Google Scholar 

  • Post, D.M. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703–718. doi:10.2307/3071875.

    Article  Google Scholar 

  • R Development Core Team. 2012. R: a language and environment to statistical computing, reference index, Version 2.8.1. R Foundation for Statistical Computing, Vienna, Austria. Available at: www.R-project.org.

  • Rajendran, N., O. Matsuda, N. Imuamura, and Y. Urushigawa. 1992. Variation in microbial biomass and community structure in sediments of eutrophic bays as determined by phospholipid ester-linked fatty acids. Applied and Evironmental Microbiology 58: 562–571. doi:10.1016/0025-326X(92)90591-S.

    CAS  Google Scholar 

  • Raymond, P.A., and J.E. Bauer. 2001. Use of 14C and 13C natural abundances for evaluating riverine, estuarine, and coastal DOC and POC sources and cycling: a review and synthesis. Organic Geochemistry 32: 469–485. doi:10.1016/S0146-6380(00)00190-X.

    Article  CAS  Google Scholar 

  • Riera, P. 1998. δ15N of organic matter sources and benthic invertebrates along an estuarine gradient in Marennes-Oléron Bay (France): implications for the study of trophic structure. Marine Ecology Progress Series 166: 143–150. doi:10.3354/meps166143.

    Article  Google Scholar 

  • Sargent, J.R. 1976. The structure, metabolism and function of lipids in marine organism. In Biochemical and biophysical perspectives in marine biology, an annual review, ed. D.C. Malines and J.R. Sargent, vol. Vol 3, 149–212. New York: Academic Press.

    Google Scholar 

  • Schmid, M., F. Guihéneuf, and D.B. Stengel. 2014. Fatty acid contents and profiles of 16 macroalgae collected from the Irish Coast at two seasons. Journal of Applied Phycology 26: 451–463. doi:10.1007/s10811-013-0132-2.

    Article  CAS  Google Scholar 

  • Schwarcz, H.P. 1991. Some theoretical aspects of isotope paleodiet studies. Journal Archaeological Science 18: 261–275.

    Article  Google Scholar 

  • Shimoda, K., Y. Aramaki, J. Nasuda, H. Yokoyama, Y. Ishihi, and A. Tamaki. 2007. Food sources for three species of Nihonotrypaea (Decapoda: Thalassinidea: Callianassidae) from western Kyushu, Japan, as determined by carbon and nitrogen stable isotope analysis. Journal of Experimental Marine Biology and Ecology 342: 292–312. doi:10.1016/j.jembe.2006.11.003.

    Article  CAS  Google Scholar 

  • Shirzad F.F., S.P. Orlando, C.J. Klein, S.E. Holliday, W.A. Warren, M.E. Monaco. 1988. National estuary inventory, suppl 1. Physical and hydrologic characteristics. The Oregon estuaries. Rockville, MD. US Department of Commerce, National Oceanic and Atmospheric Administration.

  • Spilmont, N., T. Meziane, L. Seuront, and D.T. Welsh. 2009. Identification of the food sources of sympatric ghost shrimp (Trypaea australiensis) and soldier crab (Mictyris longicarpus) populations using a lipid biomarker, dual stable isotope approach. Austral Ecology 34: 878–888. doi:10.1111/j.1442-9993.2009.01994.x.

    Article  Google Scholar 

  • Swinbanks, D.D., and J.L. Luternauer. 1987. Burrow distribution of thalassinidean shrimp on a Fraser Delta Tidal Flat, British Columbia. Journal of Paleontology 61: 315–332.

    Article  Google Scholar 

  • Thornton, S.F., and J. McManus. 1994. Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: evidence from the Tay Estuary, Scotland. Estuarine, Coastal and Shelf Science: 219–233. doi:10.1006/ecss.1994.1015.

  • Vander Zanden, M.J., and J.B. Rasmussen. 2001. Variation in δ 15N and δ 13C trophic fractionation: Implications for aquatic food web studies. Limnology and Oceanography 46: 2061–2066. doi:10.4319/lo.2001.46.8.2061.

  • Vanderklift, M.A., and S. Ponsard. 2003. Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136: 169–182. doi:10.1007/s00442-003-1270-z.

    Article  Google Scholar 

  • Wahbeh, M.I. 1997. Amino acid and fatty acid profiles of four species of macroalgae from Aqaba and their suitability for use in fish diets. Aquaculture 159: 101–109.

    Article  CAS  Google Scholar 

  • Yokoyama, H., A. Tamaki, K. Harada, K. Shimoda, K. Koyama, and Y. Ishihi. 2005. Variability of diet-tissue isotopic fractionation in estuarine macrobenthos. Marine Ecology Progress Series 296: 115–128. doi:10.3354/meps296115.

    Article  CAS  Google Scholar 

  • Young, D., P. Clinton, D. Specht, and T.C. Mochon Collura. 2015. Comparison of non-native dwarf eelgrass (Zostera japonica) and native eelgrass (Zostera marina) distributions in a northeast Pacific estuary: 1997–2014. Botanica Marina 58: 239–250. doi:10.1515/bot-2014-0088.

  • Zhang, J., Y. Wu, T.C. Jennerjahn, V. Ittekkot, and Q. He. 2007. Distribution of organic matter in the Changjiang (Yangtze River) Estuary and their stable carbon and nitrogen isotopic ratios: implications for source discrimination and sedimentary dynamics. Marine Chemistry 106: 111–126. doi:10.1016/j.marchem.2007.02.003.

Download references

Acknowledgements

This work was funded by the USDA-ARS (CRIS project 5358-63000-002-00D) and the Mamie Markham Research Scholarship. We would like to thank T. Wainwright, G. Waldbusser, and C. J. Langdon and A. Keller for their helpful comments on study design and assistance with manuscript preparation. Thanks to the three anonymous reviewers whose insightful comments and suggestions greatly improved this manuscript. Thanks also to Karolin Klink, Lee McCoy, and Daniel Sund for their help with laboratory and fieldwork and the Colorado Plateau Stable Isotope Laboratory (CPSIL) at Northern Arizona University for guidance on sample preparation and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katelyn M. Bosley.

Additional information

Communicated by: Patricia Ramey-Balci

Electronic Supplementary Material

Fig S1

(DOC 145 kb)

Table S1

(DOC 39 kb)

Table S2

(DOC 39 kb)

Table S3

(DOC 30 kb)

Table S4

(DOC 46 kb)

Table S5

(DOC 38 kb)

Table S6

(DOC 23 kb)

Table S7

(DOC 21 kb)

Table S8

(DOC 44 kb)

Table S9

(DOC 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bosley, K.M., Copeman, L.A., Dumbauld, B.R. et al. Identification of Burrowing Shrimp Food Sources Along an Estuarine Gradient Using Fatty Acid Analysis and Stable Isotope Ratios. Estuaries and Coasts 40, 1113–1130 (2017). https://doi.org/10.1007/s12237-016-0193-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-016-0193-y

Keywords

Navigation