Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 11, 2016

Investigation of phytochemicals and antioxidant capacity of selected Eucalyptus species using conventional extraction

  • Deep Jyoti Bhuyan EMAIL logo , Quan V. Vuong , Anita C. Chalmers , Ian A. van Altena , Michael C. Bowyer and Christopher J. Scarlett
From the journal Chemical Papers

Eucalyptus species have found their place in traditional medicine and pharmacological research and they have also been shown to possess a large number of phenolic compounds and antioxidants. The present study sought to implement conventional extraction to yield maximal total phenolic content (TPC), total flavonoid content (TFC), proanthocyanidins, antioxidants, and saponins from E. robusta using different solvents. The most suitable extraction solvent was further employed for extracting phytochemicals from E. saligna, E. microcorys, and E. globulus to select the Eucalyptus species with the greatest bioactive compound content. The results emphasised the efficiency of water in extracting TPC ((150.60 ± 2.47) mg of gallic acid equivalents per g), TFC ((38.83 ± 0.23) mg of rutin equivalents per g), proanthocyanidins ((5.14 ± 0.77) mg of catechin equivalents per g), and antioxidants ABTS ((525.67 ± 1.99) mg of trolox equivalents (TE) per g), DPPH ((378.61 ± 4.72) mg of TE per g); CUPRAC ((607.43 ± 6.69) mg of TE per g) from E. robusta. Moreover, the aqueous extract of E. robusta had the highest TPC, TFC and antioxidant values among the other Eucalyptus species tested. These findings highlighted the efficiency of conventional extraction in extracting natural bioactive compounds from Eucalyptus species for pharmaceutical and nutraceutical applications.

Acknowledgements.

The authors wish to acknowledge the funding support received from the following: Ramaciotti Foundation (ES2012/0104), and the University of Newcastle. The authors also wish to express their gratitude to Brad Potts and Paul Tilyard from the School of Biological Science, University of Tasmania, Australia for providing the E. globulus sample and for their valuable comments on the manuscript.

References

Almeida, I. F., Fernandes, E., Lima, J. L. F. C., Valentão, P., Andrade, P. B., Seabra, R. M., Costa, P. C., & Bahia, M. F. (2009). Oxygen and nitrogen reactive species are effectively scavenged by Eucalyptus globulus leaf water extract. Journal of Medicinal Food, 12, 175–183. DOI: 10.1089/jmf.2008.0046.10.1089/jmf.2008.0046Search in Google Scholar

Alothman, M., Bhat, R., & Karim, A. A. (2009). Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chemistry, 115, 785–788. DOI: 10.1016/j.foodchem.2008.12.005.10.1016/j.foodchem.2008.12.005Search in Google Scholar

Al-Sayed, E., Singab, A. N., Ayoub, N., Martiskainen, O., Sinkkonen, J., & Pihlaja, K. (2012). HPLC-PDA-ESI-MS/MS profiling and chemopreventive potential of Eucalyptus gomphocephala DC. Food Chemistry, 133, 1017–1024. DOI: 10.1016/j.foodchem.2011.09.036.10.1016/j.foodchem.2011.09.036Search in Google Scholar

Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52, 7970–7981. DOI: 10.1021/jf048741x.10.1021/jf048741xSearch in Google Scholar

Arnao, M. B., Cano, A., & Acosta, M. (2001). The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chemistry, 73, 239–244. DOI: 10.1016/s0308-8146(00)00324-1.10.1016/s0308-8146(00)00324-1Search in Google Scholar

Arvayo-Enríquez, H., Mondaca-Fernández, I., Gortárez-Moroyoqui, P., López-Cervantes, J., & Rodríguez-Ramírez, R. (2013). Carotenoids extraction and quantification: a review. Analytical Methods, 5, 2916–2924. DOI: 10.1039/c3ay26295b.10.1039/c3ay26295bSearch in Google Scholar

Ashour, H. M. (2008). Antibacterial, antifungal, and anticancer activities of volatile oils and extracts from stems, leaves, and flowers of Eucalyptus sideroxylon and Eucalyptus torquata. Cancer Biology & Therapy, 7, 399–403. DOI: 10.4161/cbt.7.3.5367.10.4161/cbt.7.3.5367Search in Google Scholar

Bhuyan, D. J., Van Vuong, Q., Chalmers, A. C., van Altena, I. A., Bowyer, M. C., & Scarlett, C. J. (2015). Microwave-assisted extraction of Eucalyptus robusta leaf for the optimal yield of total phenolic compounds. Industrial Crops and Products, 69, 290–299. DOI: 10.1016/j.indcrop.2015.02.044.10.1016/j.indcrop.2015.02.044Search in Google Scholar

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT – Food Science and Technology, 28, 25—30. DOI: 10.1016/s0023-6438(95)80008-5.10.1016/s0023-6438(95)80008-5Search in Google Scholar

Broadhurst, R. B., & Jones, W. T. (1978). Analysis of condensed tannins using acidified vanillin. Journal of the Science of Food and Agriculture, 29, 788–794. DOI: 10.1002/jsfa.2740290908.10.1002/jsfa.2740290908Search in Google Scholar

Cadahía, E., Conde, E., García-Vallejo, M. C., & Fernández de Simón, B. (1997). High pressure liquid chromatographic analysis of polyphenols in leaves of Eucalyptus camaldulensis, E. globulus and E. rudis: Proanthocyanidins, ellagitannins and flavonol glycosides. Phytochemical Analysis, 8, 78–83. DOI: 10.1002/(SICI)1099-1565(199703)8:2<78::AIDPCA335>3.0.C0;2-O.10.1002/(SICI)1099-1565(199703)8:2<78::AIDPCA335>3.0.C0;2-OSearch in Google Scholar

Cheok, C. Y., Salman, H. A. K., & Sulaiman, R. (2014). Extraction and quantification of saponins: A review. Food Research International, 59, 16–40. DOI: 10.1016/j.foodres.2014.01.057.10.1016/j.foodres.2014.01.057Search in Google Scholar

Dahmoune, F., Spigno, G., Moussi, K., Remini, H., Cherbal, A., & Madani, K. (2014). Pistacia lentiscus leaves as a source of phenolic compounds: Microwave-assisted extraction optimized and compared with ultrasound-assisted and conventional solvent extraction. Industrial Crops and Products, 61, 31–40. DOI: 10.1016/j.indcrop.2014.06.035.10.1016/j.indcrop.2014.06.035Search in Google Scholar

Dhanani, T., Shah, S., Gajbhiye, N. A., & Kumar, S. (2013). Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania somnifera. Arabian Journal of Chemistry. DOI: 10.1016/j.arabjc.2013.02.015. (in press)10.1016/j.arabjc.2013.02.015Search in Google Scholar

Domingues, R. M. A., Oliveira, E. L. G., Freire, C. S. R., Couto, R. M., Simões, P. C., Neto, C. P., Silvestre, A. J. D., & Silva, C. M. (2012). Supercritical fluid extraction of Eucalyptus globulus bark – A promising approach for triterpenoid production. International Journal of Molecular Sciences, 13, 7648–7662. DOI: 10.3390/ijms13067648.10.3390/ijms13067648Search in Google Scholar

Fu, L., Xu, B. T., Xu, X. R., Qin, X. S., Gan, R. Y., & Li, H. B. (2010). Antioxidant capacities and total phenolic contents of 56 wild fruits from South China. Molecules, 15, 8602–8617. DOI: 10.3390/molecules15128602.10.3390/molecules15128602Search in Google Scholar

Gharekhani, M., Ghorbani, M., & Rasoulnejad, N. (2012). Microwave-assisted extraction of phenolic and flavonoid compounds from Eucalyptus camaldulensis Dehn leaves as compared with ultrasound-assisted extraction. Latin American Applied Research, 42, 305–310.Search in Google Scholar

Gilles, M., Zhao, J., An, M., & Agboola, S. (2010). Chemical composition and antimicrobial properties of essential oils of three Australian Eucalyptus species. Food Chemistry, 119, 731–737. DOI: 10.1016/j.foodchem.2009.07.021.10.1016/j.foodchem.2009.07.021Search in Google Scholar

Gupta, D., Shah, M., & Shrivastav, P. (2013). Microwave-assisted extraction of Eucalyptus citriodora oil and comparison with conventional hydro distillation. Middle-East Journal of Scientific Research, 16, 702–705. DOI: 10.5829/idosi.mejsr.2013.16.05.11890.10.5829/idosi.mejsr.2013.16.05.11890Search in Google Scholar

Habicht, S. D., Kind, V., Rudloff, S., Borsch, C., Mueller, A. S., Pallauf, J., Yang, R. Y., & Krawinkel, M. B. (2011). Quantification of antidiabetic extracts and compounds in bitter gourd varieties. Food Chemistry, 126, 172–176. DOI: 10.1016/j.foodchem.2010.10.094.10.1016/j.foodchem.2010.10.094Search in Google Scholar

Hiai, S., Oura, H., & Nakajima, T. (1976). Color reaction of some sapogenins and saponins with vanillin and sulfuric acid. Planta Medica, 29, 116–122. DOI: 10.1055/s-0028-1097639.10.1055/s-0028-1097639Search in Google Scholar

Koleva, I. I., van Beek, T. A., Linssen, J. P. H., de Groot, A., & Evstatieva, L. N. (2002). Screening of plant extracts for antioxidant activity: A comparative study on three testing methods. Phytochemical Analysis, 13, 8–17. DOI: 10.1002/pca.611.10.1002/pca.611Search in Google Scholar PubMed

Konoshima, T., & Takasaki, M. (2002). Chemistry and bioactivity of the non-volatile constituents of eucalyptus. In J. J. W. Coppen (Ed.), Eucalyptus: the genus Eucalyptus (Vol. 22, pp. 269–290). London, UK: Taylor & Francis.10.4324/9780203219430_chapter_12Search in Google Scholar

Liazid, A., Palma, M., Brigui, J., & Barroso, C. G. (2007). Investigation on phenolic compounds stability during microwave-assisted extraction. Journal of Chromatography A, 1140, 29–34. DOI: 10.1016/j.chroma.2006.11.040.10.1016/j.chroma.2006.11.040Search in Google Scholar PubMed

Ma, X., Zhou, X. Y., Qiang, Q. Q., & Zhang, Z. Q. (2014). Ultrasound-assisted extraction and preliminary purification of proanthocyanidins and chlorogenic acid from almond (Prunus dulcis) skin. Journal of Separation Science, 37, 1834–1841. DOI: 10.1002/jssc.201400070.10.1002/jssc.201400070Search in Google Scholar PubMed

Majinda, R. R. T. (2012). Extraction and isolation of saponins. In S. D. Sarker, & L. Nahar (Eds.), Natural products isolation (Methods in Molecular Biology series, Vol. 864, pp. 415–426): Humana Press. DOI: 10.1007/978-1-61779-624-1_16.10.1007/978-1-61779-624-1_16Search in Google Scholar PubMed

Mota, I., Rodrigues Pinto, P. C., Novo, C., Sousa, G., Guerreiro, O., Guerra, Á. R., Duarte, M. F., & Rodrigues, A. E. (2012). Extraction of polyphenolic compounds from Eucalyptus globulus bark: Process optimization and screening for biological activity. Industrial & Engineering Chemistry Research, 51, 6991–7000. DOI: 10.1021/ie300103z.10.1021/ie300103zSearch in Google Scholar

Mulyaningsih, S., Sporer, F., Zimmermann, S., Reichling, J., & Wink, M. (2010). Synergistic properties of the terpenoids aromadendrene and 1,8-cineole from the essential oil of Eucalyptus globulus against antibiotic-susceptible and antibiotic-resistant pathogens. Phytomedicine, 17, 1061–1066. DOI: 10.1016/j.phymed.2010.06.018.10.1016/j.phymed.2010.06.018Search in Google Scholar PubMed

Ollanketo, M., Peltoketo, A., Hartonen, K., Hiltunen, R., & Riekkola, M. L. (2002). Extraction of sage (Salvia officinalis L.) by pressurized hot water and conventional methods: antioxidant activity of the extracts. European Food Research & Technology, 215, 158–163. DOI: 10.1007/s00217-002-0545-7.10.1007/s00217-002-0545-7Search in Google Scholar

Olszewska, M. A. (2011). In vitro antioxidant activity and total phenolic content of the inflorescences, leaves and fruits of Sorbus torminalis (L.) Crantz. Acta Poloniae Pharmaceutica, 68, 945–953.Search in Google Scholar

Puttaswamy, N. Y., Gunashekara, D. R., Ahmed, F., & Urooj, A. (2014). Phytochemical composition and in vitro anti-hyperglycemic potency of Eucalyptus tereticornis bark. Indian Journal of Nutrition, 1(1), 102.Search in Google Scholar

Ross, C. F., Hoye, C., Jr., & Fernandez-Plotka, V. C. (2011). Influence of heating on the polyphenolic content and antioxidant activity of grape seed flour. Journal of Food Science, 76, C884–C890. DOI: 10.1111/j.1750-3841.2011.02280.x.10.1111/j.1750-3841.2011.02280.xSearch in Google Scholar PubMed

Rozefelds, A. C. (1996). Eucalyptus phylogeny and history: a brief summary. Tasforests, 8, 15–26.Search in Google Scholar

Saeed, N., Khan, M. R., & Shabbir, M. (2012). Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complementary & Alternative Medicine, 12, 221. DOI: 10.1186/1472-6882-12-221.10.1186/1472-6882-12-221Search in Google Scholar PubMed PubMed Central

Santos, S. A. O., Freire, C. S. R., Domingues, M. R. M., Silvestre, A. J. D., & Neto, C. P. (2011). Characterization of phenolic components in polar extracts of Eucalyptus globulus Labill. bark by high-performance liquid chromatography-mass spectrometry. Journal of Agricultural and Food Chemistry, 59, 9386–9393. DOI: 10.1021/jf201801q.10.1021/jf201801qSearch in Google Scholar PubMed

Santos, S. A. O., Villaverde, J. J., Freire, C. S. R., Domingues, M. R. M., Neto, C. P., & Silvestre, A. J. D. (2012). Phenolic composition and antioxidant activity of Eucalyptus grandis, E. urograndis (E. grandis × E. urophylla) and E. maidenii bark extracts. Industrial Crops and Products, 39, 120–127. DOI: 10.1016/j.indcrop.2012.02.003.10.1016/j.indcrop.2012.02.003Search in Google Scholar

Sidana, J., Singh, S., Arora, S. K., Foley, W. J., & Singh, I. P. (2011). Formylated phloroglucinols from Eucalyptus loxophleba foliage. Fitoterapia, 82, 1118–1122. DOI: 10.1016/j.fitote.2011.07.009.10.1016/j.fitote.2011.07.009Search in Google Scholar PubMed

Škerget, M., Kotnik, P., Hadolin, M., Rižner Hraš, A., Simonič, M., & Knez, Ž. (2005). Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chemistry, 89, 191–198. DOI: 10.1016/j.foodchem.2004.02.025.10.1016/j.foodchem.2004.02.025Search in Google Scholar

Sultana, B., Anwar, F., & Ashraf, M. (2009). Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules, 14, 2167–2180. DOI: 10.3390/molecules14062167.10.3390/molecules14062167Search in Google Scholar PubMed PubMed Central

Tan, S. P., Parks, S. E., Stathopoulos, C. E., & Roach, P. D. (2014). Extraction of flavonoids from bitter melon. Food and Nutrition Sciences, 5, 458–465. DOI: 10.4236/fns.2014.55054.10.4236/fns.2014.55054Search in Google Scholar

Topçu, G., Yapar, G., Türkmen, Z., Gören, A. C., Öksüz, S., Schilling, J. K., & Kingston, D. G. I. (2011). Ovarian antiproliferative activity directed isolation of triterpenoids from fruits of Eucalyptus camaldulensis Dehnh. Phytochemistry Letters, 4, 421–425. DOI: 10.1016/j.phytol.2011.05.002.10.1016/j.phytol.2011.05.002Search in Google Scholar

Vázquez, G., Fontenla, E., Santos, J., Freire, M. S., González-Álvarez, J., & Antorrena, G. (2008). Antioxidant activity and phenolic content of chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts. Industrial Crops and Products, 28, 279–285. DOI: 10.1016/j.indcrop.2008.03.003.10.1016/j.indcrop.2008.03.003Search in Google Scholar

Vázquez, G., Santos, J., Freire, M. S., Antorrena, G., & González-Álvarez, J. (2012). Extraction of antioxidants from eucalyptus (Eucalyptus globulus) bark. Wood Science and Technology, 46, 443–457. DOI: 10.1007/s00226-011-0418-y.10.1007/s00226-011-0418-ySearch in Google Scholar

Vuong, Q. V., Chalmers, A. C., Jyoti Bhuyan, D., Bowyer, M. C., & Scarlett, C. J. (2015a). Botanical, phytochemical, and anticancer properties of the Eucalyptus species. Chemistry & Biodiversity, 12, 907–924. DOI: 10.1002/cbdv.201400327.10.1002/cbdv.201400327Search in Google Scholar PubMed

Vuong, Q. V., Hirun, S., Chuen, T. L. K., Goldsmith, C. D., Munro, B., Bowyer, M. C., Chalmers, A. C., Sakoff, J. A., Phillips, P. A., & Scarlett, C. J. (2015b). Physicochemical, antioxidant and anti-cancer activity of a Eucalyptus robusta (Sm.) leaf aqueous extract. Industrial Crops and Products, 64, 167–174. DOI: 10.1016/j.indcrop.2014.10.061.10.1016/j.indcrop.2014.10.061Search in Google Scholar

Yao, L. H., Jiang, Y. M., Shi, J., Tomás-Barberán, F. A., Datta, N., Singanusong, R., & Chen, S. S. (2004). Flavonoids in food and their health benefits. Plant Foods for Human Nutrition, 59, 113–122. DOI: 10.1007/s11130-004-0049-7.10.1007/s11130-004-0049-7Search in Google Scholar PubMed

Zhao, Y. H., Wang, X. M., Wang, H., Liu, T. X., & Xin, Z. H. (2014). Two new noroleanane-type triterpene saponins from the methanol extract of Salicornia herbacea. Food Chemistry, 151, 101–109. DOI: 10.1016/j.foodchem.2013.11.030.10.1016/j.foodchem.2013.11.030Search in Google Scholar PubMed

Zuorro, A., & Lavecchia, R. (2013). Optimization of enzyme-assisted lycopene extraction from tomato processing waste. Advanced Materials Research, 800, 173–176. DOI: 10.4028/www.scientific.net/amr.800.173.10.4028/www.scientific.net/amr.800.173Search in Google Scholar

Zuorro, A., Maffei, G., & Lavecchia, R. (2014). Effect of solvent type and extraction conditions on the recovery of phenolic compounds from artichoke waste. Chemical Engineering Transactions, 39, 463–468. DOI: 10.3303/cet1439078.10.3303/cet1439078Search in Google Scholar

Received: 2015-6-29
Revised: 2015-9-21
Accepted: 2015-10-10
Published Online: 2016-2-11
Published in Print: 2016-5-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/chempap-2015-0237/html
Scroll to top button