Skip to main content
Log in

A novel approach to diagnosing coronary artery disease: acoustic detection of coronary turbulence

  • Review Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Atherosclerotic disease within coronary arteries causes disruption of normal, laminar flow and generates flow turbulence. The characteristic acoustic waves generated by coronary turbulence serve as a novel diagnostic target. The frequency range and timing of microbruits associated with obstructive coronary artery disease (CAD) have been characterized. Technological advancements in sensor, data filtering and analytic capabilities may allow use of intracoronary turbulence for diagnostic and risk stratification purposes. Acoustic detection (AD) systems are based on the premise that the faint auditory signature of obstructive CAD can be isolated and analyzed to provide a new approach to noninvasive testing. The cardiac sonospectrographic analyzer, CADence, and CADScore systems are early-stage, investigational and commercialized examples of AD systems, with the latter two currently undergoing clinical testing with validation of accuracy using computed tomography and invasive angiography. Noninvasive imaging accounts for a large percentage of healthcare expenditures for cardiovascular disease in the developed world, and the growing burden of CAD will disproportionately affect areas in the developing world. AD is a portable, radiation-free, cost-effective method with the potential to provide accurate diagnosis or exclusion of significant CAD. AD represents a model for digital, miniaturized, and internet-connected diagnostic technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. http://www.who.int/mediacentre/factsheets/fs317/en/. Accessed 4 Oct 2015

  2. De Bruyne B, Pijls NHJ, Kalesan B, Barbato E, Tonino PAL, Piroth Z, Jagic N et al (2012) Fractional flow reserve-guided PCI versus medical therapy in stable coronary artery disease. N Engl J Med 367:991–1001

    Article  PubMed  Google Scholar 

  3. Levine GN, Bates ER, Blankenship JC, Lange RA, Mauri L, Mehran R et al (2011) ACCF/AHA/SCAI guideline for percutaneous coronary intervention. J Am Coll Cardiol 58:e44–e122

    Article  PubMed  Google Scholar 

  4. Windecker S, Kolh P, Alfonso F, Collet J-P, Cremer J, Falk V, Filippatos G et al (2014) ESC/EACTS guidelines on myocardial revascularization. Eur Heart J 35:2541–2619

    Article  PubMed  Google Scholar 

  5. Min JK, Leipsic J, Pencina MJ, Berman DS, Koo B-K, van Mieghem C et al (2012) Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA 308:1237–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nørgaard BL, Leipsic J, Gaur S, Seneviratne S, Ko BS, Ito H, Jensen JM et al (2014) Diagonstic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease. J Am Coll Cardiol 63:1145–1155

    Article  PubMed  Google Scholar 

  7. Dock W, Zoneraich Z (1967) A diastolic murmur arising in a stenosed coronary artery. Am J Med 42:617–619

    Article  CAS  PubMed  Google Scholar 

  8. Cheng TO (1970) Diastolic murmur caused by coronary artery stenosis. Ann Intern Med 72:543–546

    Article  CAS  PubMed  Google Scholar 

  9. Sangster JF, Oakley CM (1973) Diastolic murmur of coronary artery stenosis. Br Heart J 35:840–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fredburg JJ (1974) Pseudo-sound generation in atherosclerotic constrictions in arteries. Bull Math Biol 36:143–155

    Article  Google Scholar 

  11. McKusick VA, Webb GN, Humphries JO, Reid JA (1955) On cardiovascular sound; further observations by means of spectral phonocardiography. Circulation 11:849–870

    Article  CAS  PubMed  Google Scholar 

  12. Semmlow J, Rahalkar K (2007) Acoustic detection of coronary artery disease. Annu Rev Biomed 9:449–469

    Article  CAS  Google Scholar 

  13. Akay M, Welkowitz W, Semmlow JL, Kostis JB (1991) Application of the ARMA method to acoustic detection of coronary artery disease. Med Biol Eng Comput 29:365–372

    Article  CAS  PubMed  Google Scholar 

  14. Akay M, Akay YM, Welkowitz W, Semmlow JL, Kostis JB (1992) Application of adaptive filters to noninvasive acoustical detection of coronary occlusions before and after angioplasty. IEEE Trans Biomed Eng 39:176–184

    Article  CAS  PubMed  Google Scholar 

  15. Akay M, Akay YM, Gauthier D, Paden RG, Pavlicek W, Fortuin FD, Sweeney LP, Lee RW (2009) Dynamics of diastolic sounds caused by partially occluded coronary arteries. IEEE Trans Biomed Eng 56:513–517

    Article  PubMed  Google Scholar 

  16. Akay YM, Akay M, Welkowitz W, Semmlow JL, Kostis JB (1993) Noninvasive acoustical detection of coronary artery disease: a comparative study of signal processing methods. IEEE Trans Biomed Eng 40:571–578

    Article  CAS  PubMed  Google Scholar 

  17. Akay M, Welkowitz W, Semmlow JL, Akay YM, Kostis J (1992) Noninvasive acoustic detection of coronary artery disease using the adaptive line enhancer method. Med Biol Eng Comput 30:147–154

    Article  CAS  PubMed  Google Scholar 

  18. Akay M, Akay YM, Welkowitz W, Semmlow JL, Kostis J (1993) Application of adaptive FFT/FAST zero tracking filters to noninvasive characterization of the sound pattern caused by coronary artery stenosis before and after angioplasty. Ann Biomed Eng 21:9–17

    Article  CAS  PubMed  Google Scholar 

  19. Schmidt SE, Hansen J, Zimmermann Hammershøi D, Toft E, Struijk JJ (2011) Coronary artery disease and low frequency heart sound signatures. Comput Cardiol 38:481–484

    Google Scholar 

  20. Schmidt S, Holst-Hansen C, Hansen J, Toft E, Struijk J (2015) Acoustic features for the identification of coronary artery disease. IEEE Trans Biomed Eng 62(11):2611–2619

    Article  PubMed  Google Scholar 

  21. Borisyuk AO (2002) Experimental study of noise produced by steady flow through a simulated vascular stenosis. J Sound Vib 256:475–498

    Article  Google Scholar 

  22. Makaryus AM, Makaryus JN, Figgatt A, Mulholland D, Kushner H, Semmlow JL, Meieres J, Taylor AJ (2013) Utility of an advanced digital electronic stethoscope in the diagnosis of coronary artery disease compared with coronary computed tomographic angiography. Am J Cardiol 111:786–792

    Article  PubMed  Google Scholar 

  23. Guion-Johnson MA, Madhu KP (2006) Using digital stethoscope data to diagnose stenosis in the left anterior descending coronary artery. Circulation 114(Suppl 2):600 (abstr)

    Google Scholar 

  24. http://aumcardio.com/. Accessed 18 Sept 2015

  25. https://clinicaltrials.gov/ct2/show/NCT01743040. Accessed 18 Sept 2015

  26. Hansen J, Zimmerman H, Schmidt SE Hammershøi D, Struijk JJ (2011) System for acquisition of weak murmurs related to coronary artery diseases. Comput Cardiol 38:213–216

    Google Scholar 

  27. Zimmerman H, Schmidt SE, Hansen J, Hammershøi D, Møller H (2011) Acoustic Coupler for Acquisition of Coronary Artery Murmurs. Comput Cardiol 38:209–212

    Google Scholar 

  28. http://acarix.com/technology/the-cadscorr-system. Accessed 20 Sept 2015

  29. Winther S, Schmidt SE, Holm NR, Toft E, Struijk JJ, Bøtker HE, Bøttcher M (2016) Diagnosing coronary artery disease by sound analysis from coronary stenosis induced turbulent blood flow: diagnostic performance in patients with stable angina pectoris. Int J Cardiovasc Imaging 32:235–245

    Article  PubMed  Google Scholar 

  30. Nissen L, Winther S, Isaksen C, Ejlersen JA, Brix L, Urbonaviciene G, Frost L, Madsen LH, Knudsen LL, Schmidt SE et al (2016) Danish study of non-invasive testing in coronary artery disease (Dan-NICAD): study protocol for a randomised controlled trial. Trials 17:262

    Article  PubMed  PubMed Central  Google Scholar 

  31. Azimpour F, Caldwell E, Tawfik P, Duval S RF, Wilson RF (2016) Audible coronary artery stenosis. Am J Med 129:515–521

    Article  PubMed  Google Scholar 

  32. Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, Finkelstein EA et al (2011) Forecasting the future of cardiovascular disease in the United States. Circulation 123:933–944

    Article  PubMed  Google Scholar 

  33. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB et al; on behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee (2013) Heart disease and stroke statistics—2013 update. Circulation 127:e6–e245

    Article  PubMed  Google Scholar 

  34. Patel MR, Dai D, Hernandez AF, Douglas PS, Messenger J, Garratt KN, Maddox TM, Peterson ED, Roe MT (2014) Prevalence and predictors of nonobstructive coronary artery disease identified with coronary angiography in contemporary clinical practice. Am Heart J 167:846–852

    Article  PubMed  Google Scholar 

  35. Douglas PS, Hoffmann U, Patel MR, Mark DB, Al-Khalidi HR, Cavanaugh B, Cole J, Dolor RJ, Fordyce CB et al (2015) Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med 372:1291–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Patel MR, Peterson ED, Dai D, Brennan JM, Redberg RF, Anderson V, Brindis RG, Douglas PS (2010) Low diagnostic yield of elective coronary angiography. N Engl J Med 362:886–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Douglas PS, Taylor A, Bild D, Bonow R, Greenland P, Lauer M, Peacock F, Udelson J (2009) Outcomes research in cardiovascular imaging: report of a workshop sponsored by the national heart, lung and blood institute. J Am Soc Echocardiogr 22:766–773

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

JLT has received research grant support from AUM Cardiovascular, Inc. MB has received an unrestricted research grant from Acarix A/S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph L. Thomas.

Ethics declarations

Conflict of interest

SW and RFW have disclosed no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, J.L., Winther, S., Wilson, R.F. et al. A novel approach to diagnosing coronary artery disease: acoustic detection of coronary turbulence. Int J Cardiovasc Imaging 33, 129–136 (2017). https://doi.org/10.1007/s10554-016-0970-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-016-0970-5

Keywords

Navigation