Skip to main content

Advertisement

Log in

Soil organic carbon sequestration and tillage systems in the Mediterranean Basin: a data mining approach

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

This study has reviewed 66 long-term experimental comparisons on Soil Organic Carbon (SOC) and tillage systems in Mediterranean arable crops (from 15 sites located in Greece, Italy, Morocco and Spain), with the aim to identify the biophysical and agronomic variables most associated with C sequestration rate. Data were organized in a dataset containing basic environmental descriptors (elevation, temperature, rainfall), information on soil tillage system (conventional, minimum, no-tillage), soil attributes (pH, particle size distribution and texture), crop rotation, fertilization, time length of the experiment, initial and final SOC stocks. The collected information were analyzed using a data mining approach including Spearman non-parametric correlations, Principal Component Analysis (PCA), hierarchical clustering and step-wise multiple regression. Tillage, crop rotation, and fertilization were the most significant factors affecting C sequestration rate. Non-parametric correlations reported negative coefficients for initial SOC stock, length of the experiment, mineral fertilization, tillage and production system. C sequestration rate increased significantly under no-tillage. Hierarchical clustering indicates that geographical proximity reflects similarity in biophysical conditions and agronomic practices. PCA outlined a positive correlation of SOC with soil depth, elevation and sites located in Spain and a negative correlation with mean air temperature, mineral fertilization, irrigation, experiment’s length and sites located in Greece. C sequestration rate was positively associated with mean air temperature. Finally, a step-wise multiple regression indicated that C sequestration rate increased in sites exposed to colder climate conditions and under no-tillage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdalla K, Chivenge P, Ciais P, Chaplot V (2016) No-tillage lessens soil CO2 emissions the most under arid and sandy soil conditions: results from a meta-analysis. Biogeosciences 13:3619–3633

    Article  Google Scholar 

  • Aguilera E, Lassaletta L, Gattinger A, Gimeno BS (2013) Managing soil carbon for climate change mitigation and adaptation in Mediterranean cropping systems: a meta-analysis. Agric Ecosyst Environ 168:25–36

    Article  Google Scholar 

  • Álvaro-Fuentes J, Plaza-Bonilla D, Arrúe JL, Lampurlanés J, Cantero-Martínez C (2014) Soil organic carbon storage in a no-tillage chronosequence under Mediterranean conditions. Plant Soil 376:31–41

    Article  Google Scholar 

  • Arrouays D, Balesdent J, Germon GC, Jayet PA, Soussana JF, Stengel P (2002) Contribution à la lutte contre l’effet de serre. Stocker du carbone dans les sols agricoles de France? Expertise Scientifique Collective, Synthèse du rapport. INRA, Paris

  • Baker JM, Ochsner TE, Venterea RT, Griffis TJ (2007) Tillage and soil carbon sequestration—What do we really know? Agric Ecosyst Environ 118(1):1–5

    Article  CAS  Google Scholar 

  • Balota EL, Machineski O, Honda C, Yada IFU, Barbosa GMC, Nakatani AS, Coyne MS (2014) Response of arbuscular mycorrhizal fungi in different soil tillage systems to long-term swine slurry application. Land Degrad Dev 27:1141–1150

    Article  Google Scholar 

  • Barbera V, Poma I, Gristina L, Novara A, Egli M (2012) Long-term cropping systems and tillage management effects on soil organic carbon stock and steady state level of C sequestration rates in a semiarid environment. Land Degrad Dev 23:82–91

    Article  Google Scholar 

  • Bennett LT, Mele PM, Annett S, Kasel S (2010) Examining links between soil management, soil health, and public benefits in agricultural landscapes: an Australian perspective. Agric Ecosyst Environ 139:1–12

    Article  Google Scholar 

  • Berendse F, van Ruijven J, Jongejans E, Keesstra S (2015) Loss of plant species diversity reduces soil erosion resistance. Ecosystems 18:881–888

    Article  CAS  Google Scholar 

  • Bessam F, Mrabet R (2003) Long-term changes in soil organic matter under conventional tillage and no-tillage systems in semiarid Morocco. Soil Use Manage 19:139–143

    Article  Google Scholar 

  • Blanco-Moure N, Gracia R, Bielsa AC, Lopez MV (2013) Long-term no-tillage effects on particulate and mineral-associated soil organic matter under rainfed Mediterranean conditions. Soil Use Manage 29:250–259

    Article  Google Scholar 

  • Brevik EC, Fenton T, Moran L (2002) Effect of soil compaction on organic carbon amounts and distribution, South-Central Iowa. Environ Pollut 116:137–141

    Article  Google Scholar 

  • Brevik EC, Cerdà A, Mataix-Solera J, Pereg L, Quinton JN, Six J, Van Oost K (2015) The interdisciplinary nature of soil. Soil 1:117–129

    Article  Google Scholar 

  • Burke IC, Yonker CM, Parton WJ, Cole CV, Flach K, Schimel DS (1989) Texture, climate, and cultivation effects on soil organic matter content in US grassland soils. Soil Sci Soc Am J 53:800–805

    Article  Google Scholar 

  • Cerdá A, Giménez Morera A, García Orenes F, Morugán A, González Pelayo O, Pereira P, Novara A, Brevik EC (2014) The impact of abandonment of traditional flood irrigated citrus orchards on soil infiltration and organic matter. In: Arnáez J, González-Sampériz P, Lasanta T, Valero-Garcés BL (eds) Geoecología, Cambio Ambiental Y Paisaje. Homenaje Al Profesor José María García Ruiz, Instituto Pirenaico de Ecología, Zaragoza, pp 267–276

    Google Scholar 

  • Chenu C, Klumpp K, Bispo A, Angers D, Colnenne C, Metay A (2014) Stocker du carbone dans les sols agricoles: évaluation de leviers d’action pour la France. Innov Agron 37:23–37

    Google Scholar 

  • De Martonne E (1926) Une nouvelle fonction climatologique: l’indice d’aridite. Meteorologie 2:449–458

    Google Scholar 

  • Decock C, Lee J, Necpalova M, Pereira EIP, Tendall DM, Six J (2015) Mitigating N2O emissions from soil: from patching leaks to transformative action. Soil 1:687–694

    Article  Google Scholar 

  • Eleftheriadis A, Turrión MB (2014) Soil microbiological properties affected by land use, management, and time since deforestations and crop establishment. Eur J Soil Biol 62:138–144

    Article  Google Scholar 

  • Farina R, Seddaiu G, Orsini R, Steglich E, Roggero PP, Francaviglia R (2011) Soil carbon dynamics and crop productivity as influenced by climate change in a rain-fed cereal system under contrasting tillage using EPIC. Soil Tillage Res 112:236–248

    Article  Google Scholar 

  • Francaviglia R, Benedetti A, Doro L, Madrau S, Ledda L (2014) Influence of land use on soil quality and stratification ratios under agro-silvo-pastoral Mediterranean management systems. Agric Ecosyst Environ 183:86–92

    Article  Google Scholar 

  • Franzluebbers AJ (2010) Achieving soil organic carbon sequestration with conservation agricultural systems in the Southeastern United States. Soil Sci Soc Am J 74:347–357

    Article  CAS  Google Scholar 

  • Franzluebbers AJ, Hons FM, Zuberer DA (1998) In situ and potential CO2 evolution from a Fluventic Ustochrept in southcentral Texas as affected by tillage and cropping intensity. Soil Tillage Res 47:303–308

    Article  Google Scholar 

  • García-Díaz A, Allas RB, Gristina L, Cerdà A, Pereira P, Novara A (2016) Carbon input threshold for soil carbon budget optimization in eroding vineyards. Geoderma 271:144–149

    Article  Google Scholar 

  • González-Sánchez EJ, Ordóñez-Fernández R, Carbonell-Bojollo R, Veroz-Gonzalez O, Gil-Ribes JA (2012) Meta-analysis on atmospheric carbon capture in Spain through the use of conservation agriculture. Soil Tillage Res 122:52–60

    Article  Google Scholar 

  • Grandy AS, Robertson GP (2007) Land-use intensity effects on soil organic carbon accumulation rates and mechanisms. Ecosystems 10(1):59–74

    Article  Google Scholar 

  • Gregory AS, Dungait JAJ, Watts CW, Bol R, Dixon ER, White RP, Whitmore AP (2016) Long-term management changes topsoil and subsoil organic carbon and nitrogen dynamics in a temperate agricultural system. Eur J Soil Sci 67(4):421–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernanz JL, López R, Navarrete L, Sánchez-Girón V (2005) Long-term effects of tillage systems and rotations on soil structural stability and organic carbon stratification in semiarid central Spain. Soil Tillage Res 66:129–141

    Article  Google Scholar 

  • Hernanz JL, Sánchez-Girón V, Navarrete L (2009) Soil carbon sequestration and stratification in a cereal/leguminous crop rotation with three tillage systems in semiarid conditions. Agric Ecosyst Environ 133:114–122

    Article  CAS  Google Scholar 

  • Howard PJA, Loveland PJ, Bradley RI, Dry FT, Howard DM, Howard DC (1995) The carbon content of soil and its geographical-distribution in Great-Britain. Soil Use Manage 11:9–15

    Article  Google Scholar 

  • IPCC (2006) Guidance for National Greenhouse Gas Inventories Programme. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) Agriculture, Forestry and other Land Use, vol 4. IGES, Japan

    Google Scholar 

  • Jenny H (1980) The soil resource: origin and behavior. Ecological studies, vol Vol. 37. Springer, New York, p 377

    Google Scholar 

  • Keesstra SD, Geissen V, van Schaik L, Mosse K, Piiranen S (2012) Soil as a filter for groundwater quality. Curr Opin Environ Sustain 4:507–516

    Article  Google Scholar 

  • Keesstra SD, Bouma J, Wallinga J, Tittonell P, Smith P, Cerdà A, Montanarella L, Quinton JN, Pachepsky Y, van der Putten WH, Bardgett RD, Moolenaar S, Mol G, Jansen B, Fresco LO (2016) The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil 2:111–128

    Article  Google Scholar 

  • Lal R (2008) Soil carbon stocks under present and future climate with specific reference to European ecoregions. Nutr Cycl Agroecosyst 81:113–127

    Article  Google Scholar 

  • Laudicina VA, Badalucco L, Palazzolo E (2011) Effects of compost input and tillage intensity on soil microbial biomass and activity under Mediterranean conditions. Biol Fertil Soils 47:63–70

    Article  Google Scholar 

  • Laudicina VA, Novara A, Barbera V, Egli M, Badalucco L (2015) Long-term tillage and cropping system effects on chemical and biochemical characteristics of soil organic matter in a Mediterranean semiarid environment. Land Degrad Dev 26:45–53

    Article  Google Scholar 

  • Lieskovský J, Kenderessy P (2014) Modelling the effect of vegetation cover and different tillage practices on soil erosion in vineyards: a case study in Vráble (Slovakia) using WATEM/SEDEM. Land Degrad Dev 25:288–296

    Article  Google Scholar 

  • López-Bellido RJ, Fontán JM, López-Bellido FJ, López-Bellido LL (2010) Carbon sequestration by tillage, rotation, and nitrogen fertilization in a Mediterranean Vertisol. Agron J 102:310–318

    Article  Google Scholar 

  • López-Fando C, Pardo MT (2009) Changes in soil chemical characteristics with different tillage practices in a semi-arid environment. Soil Tillage Res 104:278–284

    Article  Google Scholar 

  • López-Fando C, Pardo MT (2011) Soil carbon storage and stratification under different tillage systems in a semi-arid region. Soil Tillage Res 111:224–230

    Article  Google Scholar 

  • Lozano-García B, Parras-Alcántara L (2014a) Land use and management effects on carbon and nitrogen in Mediterranean cambisols. Agric Ecosyst Environ 179:208–214

    Article  Google Scholar 

  • Lozano-García B, Parras-Alcántara L (2014b) Variation in soil organic carbon and nitrogen stocks along a toposequence in a traditional Mediterranean olive grove. Land Degrad Dev 25:297–304

  • Luo Z, Wang E, Sun OJ (2010) Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agric Ecosyst Environ 139:224–231

    Article  CAS  Google Scholar 

  • Mazzoncini M, Di Bene C, Coli A, Antichi D, Petri M, Bonari E (2008) Rainfed wheat and soybean productivity in a long-term tillage experiment in central Italy. Agron J 100(5):1418–1429

    Article  Google Scholar 

  • Mazzoncini M, Sapkota TB, Bàrberi P, Antichi D, Risaliti R (2011) Long-term effect of tillage, nitrogen fertilization and cover crops on soil organic carbon and total nitrogen content. Soil Tillage Res 114:165–174

    Article  Google Scholar 

  • Mazzoncini M, Antichi D, Di Bene C, Risaliti R, Petri M, Bonari E (2016) Soil carbon and nitrogen changes after 28 years of no-tillage management under Mediterranean conditions. Eur J Agron 77:156–165

    Article  CAS  Google Scholar 

  • McDaniel MD, Tiemann LK, Grandy AS (2014) Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecol Appl 24:560–570

    Article  CAS  PubMed  Google Scholar 

  • MEA (2005) Ecosystems and human well-being: synthesis. Millennium Ecosystem Assessment. Island Press, Washington, p 137

    Google Scholar 

  • Muñoz-Rojas M, Jordán A, Zavala L, De la Rosa D, Abd-Elmabod SK, Anaya- Romero M (2012) Organic carbon stocks in Mediterranean soil types under different land uses (Southern Spain). Solid Earth 3:375–386

    Article  Google Scholar 

  • Nichols JD (1984) Relation of organic carbon to soil properties and climate in the southern Great Plains. Soil Sci Soc Am J 48:1382–1384

    Article  CAS  Google Scholar 

  • Novara A, Gristina L, Saladino SS, Santoro A, Cerdà A (2011) Soil erosion assessment on tillage and alternative soil managements in a Sicilian vineyard. Soil Tillage Res 117:140–147

    Article  Google Scholar 

  • Novara A, Cerdá A, Dazzi C, Lo Papa G, Santoro A, Gristina L (2015) Effectiveness of carbon isotopic signature for estimating soil erosion and deposition rates in Sicilian vineyards. Soil Tillage Res 152:1–7

    Article  Google Scholar 

  • Ogle SM, Breidt FJ, Paustian K (2005) Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions. Biogeochemistry 72:87–121

    Article  Google Scholar 

  • Parras-Alcántara L, Lozano-García B, Galán-Espejo A (2015) Soil organic carbon along an altitudinal gradient in the Despeñaperros Natural Park, southern Spain. Solid Earth 6:125–134

    Article  Google Scholar 

  • Pittelkow CM, Linquist BA, Lundy ME, Liang X, van Groenigen KJ, Lee J, van Gestel N, Six J, Venterea R, van Kessel C (2015) When does no-till yield more? A global meta-analysis. Field Crop Res 183:156–168

    Article  Google Scholar 

  • Poeplau C, Don A (2015) Carbon sequestration in agricultural soils via cultivation of cover crops–A meta-analysis. Agric Ecosyst Environ 200:33–41

    Article  CAS  Google Scholar 

  • Salvati L, Ferrara C, Barone PM (2015) Exploring the multiplicity of soil-human interactions: organic carbon content, agro-forest landscapes and the Italian Local Communities. Environ Monit Assess 187(5):1–14

    Article  CAS  Google Scholar 

  • Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241:155–176

    Article  CAS  Google Scholar 

  • Six J, Ogle SM, Breidt FJ, Conant RT, Mosier AR, Paustian K (2004) The potential to mitigate global warming with no-tillage management is only realized when practiced in the long term. Global Change Biol 10:155–160

    Article  Google Scholar 

  • Smith P, Cotrufo MF, Rumpel C, Paustian K, Kuikman PJ, Elliott JA, McDowell R, Griffiths RI, Asakawa S, Bustamante M, House JI, Sobocká J, Harper R, Pan G, West PC, Gerber JS, Clark JM, Adhya T, Scholes RJ, Scholes MC (2015) Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. Soil 1:665–685

    Article  Google Scholar 

  • Soil Survey Staff (2011) Soil Survey Laboratory Information Manual. Soil Survey Investigations Report No. 45, Version 2.0. Burt R (ed). U.S. Department of Agriculture, Natural Resources Conservation Service

  • Sombrero A, de Benito A (2010) Carbon accumulation in soil. Ten-year study of conservation tillage and crop rotation in a semi-arid area of Castile-Leon, Spain. Soil Tillage Res 107:64–70

    Article  Google Scholar 

  • Troccoli A, Maddaluno C, Mucci M, Russo M, Rinaldi M (2015) Is it appropriate to support the farmers for adopting conservation agriculture? Economic and environmental impact assessment. Ital J Agron 10:169–177

    Article  Google Scholar 

  • Vicente-Vicente JL, García-Ruiz R, Francaviglia R, Aguilera E, Smith P (2016) Soil carbon sequestration rates under Mediterranean woody crops using recommended management practices: a meta-analysis. Agric Ecosyst Environ 235:204–214

    Article  Google Scholar 

  • Virto I, Barré P, Burlot A, Chenu C (2012) Carbon input differences as the main factor explaining the variability in soil organic C storage in no-tilled compared to inversion tilled agrosystems. Biogeochemistry 108:17–26

    Article  Google Scholar 

  • Walraevens K, Gebreyohannes Tewolde T, Amare K, Hussein A, Berhane G, Baert R, Ronsse S, Kebede S, Van Hulle L, Deckers J, Martens K, Van Camp M (2015) Water balance components for sustainability assessment of groundwater-dependent agriculture: example of the Mendae Plain (Tigray, Ethiopia). Land Degrad Dev 26:725–736

    Article  Google Scholar 

  • West TO, Post WM (2002) Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis. Soil Sci Soc Am J 66:1930–1946

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Di Bene.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francaviglia, R., Di Bene, C., Farina, R. et al. Soil organic carbon sequestration and tillage systems in the Mediterranean Basin: a data mining approach. Nutr Cycl Agroecosyst 107, 125–137 (2017). https://doi.org/10.1007/s10705-016-9820-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-016-9820-z

Keywords

Navigation