Skip to main content
Log in

Evolution of mechanical properties of granite at high temperature and high pressure

  • Original Article
  • Published:
Geomechanics and Geophysics for Geo-Energy and Geo-Resources Aims and scope Submit manuscript

Abstract

Rock engineering works, such as geothermal and deep hydrocarbon resource development and deep underground geological disposal of nuclear waste, are closely related to the mechanical properties of rocks at high temperature and high pressure. This study reports on the use of the micro-CT technique, acoustic emission (AE) technique and the 600 °C 20MN servo-controlled trixial compression system for rock testing under high temperature and high pressure to study the evolution of mesostructure, AE characteristics and the evolution of macro-mechanical properties of granite under high temperature and high pressure. The results obtained from the experiments show that: (1) Very few micro-cracks occur when granite is at 200 °C, while mylonitic crystal granular structures appear at 500 °C. (2) AE characteristics indicate that the thermal cracking of granite is intermittent and multi-stage. Under the influence of thermal cracking, the permeability of granite also presents several peaks. (3) Under the stress state equivalent to 1000 m buried depth, the thermal deformation and the thermal expansion coefficient both have different stages from room temperature to 600 °C. The thermal expansion coefficient under triaxial pressure is approximately 20 times less than the coefficient without confinement, showing that this parameter is profoundly affected by the confining pressure. The failure mode of granite under high temperature is shear failure, just as under room temperature. The stress–strain curve, however, presents different characteristics compared to those under room temperature. (4) When subjected to confining pressure, the elastic modulus of granite has different periods. Overall, it decreases with the increase of temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Araújo RGS, Sousa J, Bloch M (1997) Experimental investigation on the influence of temperature on the mechanical properties of reservoir rocks. Int J Rock Mech Min Sci 34(3):298–313

    Google Scholar 

  • Bauer SJ, Handin J (1983) Thermal expansion and cracking of three confined water-saturated igneous rocks to 800 °C. Rock Mech Rock Eng 16(3):181–198

    Article  Google Scholar 

  • Brantut N, Heap MJ, Meredith PG, Baud P (2013) Time-dependent cracking and brittle creep in crustal rocks: a review. J Struct Geol 52:17–43

    Article  Google Scholar 

  • Brodsky NS, Riggins M, Connolly J (1997) Thermal expansion, thermal conductivity, and heat capacity measurements at Yucca Mountain, Nevada. Int J Rock Mech Min Sci 34(3):40–54

    Google Scholar 

  • Brotóns V, Tomás R, Ivorra S, Alarcon JC (2013) Temperature influence on the physical and mechanical properties of a porous rock: San Julian’s calcarenite. Eng Geol 167:117–127

    Article  Google Scholar 

  • Burov EB (2011) Rheology and strength of the lithosphere. Mar Pet Geol 28(8):1402–1443

    Article  Google Scholar 

  • Castro J, Cicero S, Sagaseta C (2016) A criterion for brittle failure of rocks using the theory of critical distances. Rock Mech Rock Eng 49:63–77

    Article  Google Scholar 

  • Chaki S, Takarli M, Agbodjan WP (2008) Influence of thermal damage on physical properties of a granite rock: porosity, permeability and ultrasonic wave evolutions. Constr Build Mater 22(7):1456–1461

    Article  Google Scholar 

  • Chakrabarti B, Yates T, Lewry A (1996) Effect of fire damage on natural stonework in buildings. Constr Build Mater 10(7):539–544

    Article  Google Scholar 

  • Chen YL, Ni J, Shao W, Azzam R (2012) Experimental study on the influence of temperature on the mechanical properties of granite under uni-axial compression and fatigue loading. Int J Rock Mech Min Sci 56:62–66

    Google Scholar 

  • Delage P, Sultan N, Cui YJ (2000) On the thermal consolidation of Boom clay. Can Geotech J 37(2):343–354

    Article  Google Scholar 

  • Dwivedi RD, Goel RK, Prasad VVR, Sinha A (2008) Thermo-mechanical properties of Indian and other granites. Int J Rock Mech Min Sci 45(3):303–315

    Article  Google Scholar 

  • Garitte B, Gens A, Vaunat J, Armand G (2014) Thermal conductivity of argillaceous rocks: determination methodology using in situ heating tests. Rock Mech Rock Eng 47(1):111–129

    Article  Google Scholar 

  • Ghabezloo S (2012) Micromechanical analysis of the effect of porosity on the thermal expansion coefficient of heterogeneous porous materials. Int J Rock Mech Min Sci 55:97–101

    Google Scholar 

  • Giannattasio A, Roberts SG (2007) Strain-rate dependence of the brittle-to-ductile transition temperature in tungsten. Philos Mag 87(17):2589–2598

    Article  Google Scholar 

  • Gomez-Heras M, Buergo MA, Fort R, Hajpál M, Torok A (2006) Evolution of porosity in Hungarian building stones after simulated burning, heritage weathering and conservation HWC-2006. Taylor and Francis, Rotterdam

    Google Scholar 

  • Gómez-Heras M, Fort R, Morcillo M, Ocana JL (2008) Laser heating: a minimally invasive technique for studying fire-generated heating in building stone. Mater Constr 58(289–290):203–217

    Google Scholar 

  • Gräf V, Jamek M, Rohatsch A, Tschegg E (2013) Effects of thermal-heating cycle treatment on thermal expansion behavior of different building stones. Int J Rock Mech Min Sci 64:228–235

    Google Scholar 

  • Hajpál M (2002) Changes in sandstones of historical monuments exposed to fire or high temperature. Fire Technol 38(4):373–382

    Article  Google Scholar 

  • Hajpál M, Török A (2004) Mineralogical and colour changes of quartz sandstones by heat. Environ Geol 46(3–4):311–322

    Google Scholar 

  • Hassanzadegan A, Blöcher G, Milsch H, Urpi L, Zimmermann G (2014) The effects of temperature and pressure on the porosity evolution of Flechtinger sandstone. Rock Mech Rock Eng 47(2):421–434

    Article  Google Scholar 

  • Heard HC (1980) Thermal expansion and inferred permeability of climax quartz monzonite to 300 °C and 27.6 MPa. Int J Rock Mech Min Sci Geomech Abstr 17(5):289–296

    Article  Google Scholar 

  • Kim K, Kemeny J, Nickerson M (2014) Effect of rapid thermal cooling on mechanical rock properties. Rock Mech Rock Eng 47(6):2005–2019

    Article  Google Scholar 

  • Kitano K, Shin K, Kinoshita N, Okuno T (1988) Mechanical, thermal properties and permeability of rocks under high temperature. J Jpn Soc Eng Geol 29(3):242–253

    Article  Google Scholar 

  • Koca MY, Ozden G, Yavuz AB, Kincal C, Onargan T (2006) Changes in the engineering properties of marble in fire-exposed columns. Int J Rock Mech Min Sci 43(4):520–530

    Article  Google Scholar 

  • Liang WG, Xu SG, Zhao YS (2006) Experimental study of temperature effects on physical and mechanical characteristics of salt rock. Rock Mech Rock Eng 39(5):469–482

    Article  Google Scholar 

  • Liu S, Xu J (2013) Study on dynamic characteristics of marble under impact loading and high temperature. Int J Rock Mech Min Sci 62:51–58

    Google Scholar 

  • Liu S, Xu J (2014) Mechanical properties of Qinling biotite granite after high temperature treatment. Int J Rock Mech Min Sci 71:188–193

    Google Scholar 

  • Liu S, Xu J (2015) An experimental study on the physico-mechanical properties of two post-high-temperature rocks. Eng Geol 185:63–70

    Article  Google Scholar 

  • Luo J, Wang L (2011) High-temperature mechanical properties of mudstone in the process of underground coal gasification. Rock Mech Rock Eng 44(6):749–754

    Article  Google Scholar 

  • Mahmutoglu Y (1998) Mechanical behaviour of cyclically heated fine grained rock. Rock Mech Rock Eng 31(3):169–179

    Article  Google Scholar 

  • McCabe S, Smith BJ, Warke PA (2007a) Preliminary observations on the impact of complex stress histories on sandstone response to salt weathering: laboratory simulations of process combinations. Environ Geol 52(2):251–258

    Article  Google Scholar 

  • McCabe S, Smith BJ, Warke PA (2007b) Sandstone response to salt weathering following simulated fire damage: a comparison of the effects of furnace heating and fire. Earth Surf Process Landf 32(12):1874–1883

    Article  Google Scholar 

  • Monfared M, Sulem J, Delage P, Mohajerani M (2011) A laboratory investigation on thermal properties of the Opalinus claystone. Rock Mech Rock Eng 44(6):735–747

    Article  Google Scholar 

  • Monfared M, Sulem J, Delage P, Mohajerani M (2014) Temperature and damage impact on the permeability of Opalinus clay. Rock Mech Rock Eng 47(1):101–110

    Article  Google Scholar 

  • Morin R, Silva AJ (1984) The effects of high pressure and high temperature on some physical properties of ocean sediments. J Geophys Res Solid Earth 89(B1):511–526

    Article  Google Scholar 

  • Ozguven A, Ozcelik Y (2014) Effects of high temperature on physico-mechanical properties of Turkish natural building stones. Eng Geol 183:127–136

    Article  Google Scholar 

  • Rutqvist J, Freifeld B, Min KB, Elsworth D, Tsang Y (2008) Analysis of thermally induced changes in fractured rock permeability during 8 years of heating and cooling at the Yucca mountain drift scale test. Int J Rock Mech Min Sci 45(8):1373–1389

    Article  Google Scholar 

  • Santos JPLD, Rosa LG, Amaral PM (2011) Temperature effects on mechanical behaviour of engineered stones. Constr Build Mater 25(1):171–174

    Article  Google Scholar 

  • Sengun N (2014) Influence of thermal damage on the physical and mechanical properties of carbonate rocks. Arab J Geosci 7(12):5543–5551

    Article  Google Scholar 

  • Shen B, Kim HM, Park ES, Kim TK, Wuttke MW (2013) Multi-region boundary element analysis for coupled thermal-fracturing processes in geomaterials. Rock Mech Rock Eng 46(1):135–151

    Article  Google Scholar 

  • Tesauro M, Kaban MK, Cloetingh SAPL (2009) A new thermal and rheological model of the European lithosphere. Tectonophysics 476(3):478–495

    Article  Google Scholar 

  • Tian H, Kempka T, Yu S, Ziegler M (2016) Mechanical properties of sandstones exposed to high temperature. Rock Mech Rock Eng 49(1):321–327

    Article  Google Scholar 

  • Vinciguerra S, Trovato C, Meredith PG, Benson PM (2005) Relating seismic velocities, thermal cracking and permeability in Mt. Etna and Iceland basalts. Int J Rock Mech Min Sci 42(7):900–910

    Article  Google Scholar 

  • Wan ZJ, Zhao YS, Zhang Y, Wang C (2009) Research status quo and prospection of mechanical characteristics of rock under high temperature and high pressure. Proced Earth Planet Sci 1(1):565–570

    Article  Google Scholar 

  • Wu G, Wang Y, Swift G, Chen J (2013) Laboratory investigation of the effects of temperature on the mechanical properties of sandstone. Geotech Geol Eng 31(2):809–816

    Article  Google Scholar 

  • Yu QL, Ranjith PG, Liu HY, Yang TH, Tang SB, Tang CA, Yang SQ (2015) A mesostructure-based damage model for thermal cracking analysis and application in granite at elevated temperatures. Rock Mech Rock Eng 48:2263–2282

    Article  Google Scholar 

  • Zhang LY, Mao XB, Lu AH (2009) Experimental study on the mechanical properties of rocks at high temperature. Sci China Ser E Technol Sci 52(3):641–646

    Article  Google Scholar 

  • Zhang P, Mishra B, Heasley KA (2015) Experimental investigation on the influence of high pressure and high temperature on the mechanical properties of deep reservoir rocks. Rock Mech Rock Eng 48(6):1–15

    Article  Google Scholar 

  • Zhao YS, Wan ZJ, Feng ZJ, Yang D, Zhang Y, Qu F (2012) Triaxial compression system for rock testing under high temperature and high pressure. Int J Rock Mech Min Sci 52(6):132–138

    Article  Google Scholar 

  • Zharikov AV, Vitovtova VM, Shmonov VM, Grafchikov AA (2003) Permeability of the rocks from the Kola superdeep borehole at high temperature and pressure: implication to fluid dynamics in the continental crust. Tectonophysics 370(1):177–191

    Article  Google Scholar 

  • Zhu H, Yan Z, Deng T, Yao J, Zeng LJ, Qiang J (2006) Testing study on mechanical properties of tuff, granite and breccia after high temperatures. Chin J Rock Mech Eng 25(10):1945–1950

    Google Scholar 

Download references

Acknowledgements

This work was supported by the State Key Program of National Natural Science of China (Grant No. 50534030, 51225404, 51104105, 21373146, 51304142). This support is gratefully acknowledged. We also thank Ning Zhang, Fuke Dong, Jinwen Wu and Qiaorong Meng for their assistance with the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. S. Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y.S., Wan, Z.J., Feng, Z.J. et al. Evolution of mechanical properties of granite at high temperature and high pressure. Geomech. Geophys. Geo-energ. Geo-resour. 3, 199–210 (2017). https://doi.org/10.1007/s40948-017-0052-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40948-017-0052-8

Keywords

Navigation