Skip to main content

Advertisement

Log in

Variation at NRG1 genotype related to modulation of small-world properties of the functional cortical network

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Functional brain networks possess significant small-world (SW) properties. Genetic variation relevant to both inhibitory and excitatory transmission may contribute to modulate these properties. In healthy controls, genotypic variation in Neuregulin 1 (NRG1) related to the risk of psychosis (risk alleles) would contribute to functional SW modulation of the cortical network. Electroencephalographic activity during an odd-ball task was recorded in 144 healthy controls. Then, small-worldness (SWn) was calculated in five frequency bands (i.e., theta, alpha, beta1, beta2 and gamma) for baseline (from −300 to the stimulus onset) and response (150–450 ms post-target stimulus) windows. The SWn modulation was defined as the difference in SWn between both windows. Association between SWn modulation and carrying the risk allele for three single nucleotide polymorphisms (SNP) of NRG1 (i.e., rs6468119, rs6994992 and rs7005606) was assessed. A significant association between three SNPs of NRG1 and the SWn modulation was found, specifically: NRG1 rs6468119 in alpha and beta1 bands; NRG1 rs6994992 in theta band; and NRG1 rs7005606 in theta and beta1 bands. Genetic variation at NRG1 may influence functional brain connectivity through the modulation of SWn properties of the cortical network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239. doi:10.1038/35067550

    Article  CAS  PubMed  Google Scholar 

  2. Tognoli E, Kelso JAS (2014) The metastable brain. Neuron 81:35–48. doi:10.1016/j.neuron.2013.12.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tan HRM, Lana L, Uhlhaas PJ (2013) High-frequency neural oscillations and visual processing deficits in schizophrenia. Front Psychol 4:1–19. doi:10.3389/fpsyg.2013.00621

    Article  Google Scholar 

  4. Borsboom D, Cramer AOJ, Schmittmann VD et al (2011) The small world of psychopathology. PLoS One. doi:10.1371/journal.pone.0027407

    PubMed  PubMed Central  Google Scholar 

  5. Micheloyannis S (2012) World J Psychiatry. doi:10.5498/wjp.v2.i1.EDITORIAL

    PubMed  PubMed Central  Google Scholar 

  6. Shim M, Kim DW, Lee SH, Im CH (2014) Disruptions in small-world cortical functional connectivity network during an auditory oddball paradigm task in patients with schizophrenia. Schizophr Res 156:197–203. doi:10.1016/j.schres.2014.04.012

    Article  PubMed  Google Scholar 

  7. Smit DJA, Stam CJ, Posthuma D et al (2008) Heritability of “small-world” networks in the brain: a graph theoretical analysis of resting-state EEG functional connectivity. Hum Brain Mapp 29:1368–1378. doi:10.1002/hbm.20468

    Article  PubMed  Google Scholar 

  8. Li M, Chen Z, Li T (2012) Small-world brain networks in schizophrenia. Shanghai Arch Psychiatry 24:322–327. doi:10.3969/j.issn.1002-0829.2012.06.003

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Buzsáki G (2006) Diversity of cortical functions. Rythm. Brain. Oxford University Press, New York, pp 21–79

    Chapter  Google Scholar 

  10. Wang Q, Su T-P, Zhou Y et al (2012) Anatomical insights into disrupted small-world networks in schizophrenia. Neuroimage 59:1085–1093. doi:10.1016/j.neuroimage.2011.09.035

    Article  PubMed  Google Scholar 

  11. Bassett DS, Bullmore E, Verchinski BA et al (2008) Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 28:9239–9248. doi:10.1523/JNEUROSCI.1929-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. He H, Sui J, Yu Q et al (2012) Altered small-world brain networks in schizophrenia patients during working memory performance. PLoS One 7:e38195. doi:10.1371/journal.pone.0038195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lichtenstein P, Yip BH, Björk C et al (2009) Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 373:234–239. doi:10.1016/S0140-6736(09)60072-6

    Article  CAS  PubMed  Google Scholar 

  14. Fazzari P, Paternain AV, Valiente M et al (2010) Control of cortical GABA circuitry development by Nrg1 and ErbB4 signalling. Nature 464:1376–1380. doi:10.1038/nature08928

    Article  CAS  PubMed  Google Scholar 

  15. Neddens J, Fish KN, Tricoire L et al (2011) Conserved interneuron-specific ErbB4 expression in frontal cortex of rodents, monkeys, and humans: implications for schizophrenia. Biol Psychiatry 70:636–645. doi:10.1016/j.biopsych.2011.04.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Calaora V, Rogister B, Bismuth K et al (2001) Neuregulin signaling regulates neural precursor growth and the generation of oligodendrocytes in vitro. J Neurosci 21:4740–4751

    CAS  PubMed  Google Scholar 

  17. Flames N, Long JE, Garratt AN et al (2004) Short- and long-range attraction of cortical GABAergic interneurons by neuregulin-1. Neuron 44:251–561. doi:10.1016/j.neuron.2004.09.028

    Article  CAS  PubMed  Google Scholar 

  18. Harrison PJ, Law AJ (2006) Neuregulin 1 and schizophrenia: genetics, gene expression, and neurobiology. Biol Psychiatry 60:132–140. doi:10.1016/j.biopsych.2005.11.002

    Article  CAS  PubMed  Google Scholar 

  19. Bin Kwon O, Paredes D, Gonzalez CM et al (2008) Neuregulin-1 regulates LTP at CA1 hippocampal synapses through activation of dopamine D4 receptors. Proc Natl Acad Sci U S A 105:15587–15592. doi:10.1073/pnas.0805722105

    Article  Google Scholar 

  20. Banerjee A, MacDonald ML, Borgmann-Winter KE, Hahn CG (2010) Neuregulin 1–ErbB4 pathway in schizophrenia: from genes to an interactome. Brain Res Bull 83:132–139. doi:10.1016/j.brainresbull.2010.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stefansson H, Sigurdsson E, Steinthorsdottir V et al (2002) Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 71:877–892. doi:10.1086/342734

    Article  PubMed  PubMed Central  Google Scholar 

  22. Keri S, Kiss I, Seres I, Kelemen O (2009) A polymorphism of the neuregulin 1 gene(SNP8NRG243177/rs6994992) affects reactivity to expressed emotion in schizophrenia. Am J Med Genet Part B Neuropsychiatr Genet 150:418–420. doi:10.1002/ajmg.b.30812

    Article  Google Scholar 

  23. McBain CJ, Fisahn A (2001) Interneurons unbound. Nat Rev Neurosci 2:11–23. doi:10.1038/35049047

    Article  CAS  PubMed  Google Scholar 

  24. McIntosh AM, Moorhead TWJ, Job D et al (2008) The effects of a neuregulin 1 variant on white matter density and integrity. Mol Psychiatry 13:1054–1059. doi:10.1038/sj.mp.4002103

    Article  CAS  PubMed  Google Scholar 

  25. Buonanno A (2010) The neuregulin signaling pathway and schizophrenia: from genes to synapses and neural circuits. Brain Res Bull 83:122–131. doi:10.1016/j.brainresbull.2010.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cho Y, Ryu S, Huh I et al (2015) Effects of genetic variations in NRG1 on cognitive domains in patients with schizophrenia and healthy individuals. Psychiatr Genet. doi:10.1097/YPG.0000000000000087

    Google Scholar 

  27. Hall J, Whalley HC, Job DE et al (2006) A neuregulin 1 variant associated with abnormal cortical function and psychotic symptoms. Nat Neurosci 9:1477–1478. doi:10.1038/nn1795

    Article  CAS  PubMed  Google Scholar 

  28. Gutiérrez-Fernández A, Palomino A, González-Pinto A et al (2014) Novel association of neuregulin 1 gene with bipolar disorder but not with schizophrenia. Schizophr Res 159:552–553. doi:10.1016/j.schres.2014.09.001

    Article  PubMed  Google Scholar 

  29. Goes FS, Willour VL, Zandi PP et al (2009) Family-based association study of neuregulin 1 with psychotic bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 150B:693–702. doi:10.1002/ajmg.b.30895

    Article  CAS  PubMed  Google Scholar 

  30. Bledowski C, Prvulovic D, Hoechstetter K et al (2004) Localizing P300 generators in visual target and distractor processing: a combined event-related potential and functional magnetic resonance imaging study. J Neurosci 24:9353–9360. doi:10.1523/JNEUROSCI.1897-04.2004

    Article  CAS  PubMed  Google Scholar 

  31. Bachiller A, Poza J, Gómez C et al (2015) A comparative study of event-related coupling patterns during an auditory oddball task in schizophrenia. J Neural Eng 12:016007. doi:10.1088/1741-2560/12/1/016007

    Article  PubMed  Google Scholar 

  32. Mallat S (1999) A wavelet tour of signal processing. Academic Press, Waltham, MA, pp 20–41

  33. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78. doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2

    Article  Google Scholar 

  34. Nunez PL, Srinivasan R, Westdorp AF et al (1997) EEG coherency. I: statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalogr Clin Neurophysiol 103:499–515

    Article  CAS  PubMed  Google Scholar 

  35. Boccaletti S, Latora V, Moreno Y et al (2006) Complex networks: structure and dynamics. Phys Rep 424:175–308. doi:10.1016/j.physrep.2005.10.009

    Article  Google Scholar 

  36. Stam CJ, de Haan W, Daffertshofer A et al (2009) Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain 132:213–224. doi:10.1093/brain/awn262

    Article  CAS  PubMed  Google Scholar 

  37. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52:1059–1069. doi:10.1016/j.neuroimage.2009.10.003

    Article  PubMed  Google Scholar 

  38. Bachiller A, Lubeiro A, Díez A et al (2014) Decreased entropy modulation of EEG response to novelty and relevance in schizophrenia during a P300 task. Eur Arch Psychiatry Clin Neurosci. doi:10.1007/s00406-014-0525-5

    Google Scholar 

  39. Von Stein A, Sarnthein J (2000) Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol 38:301–313

    Article  Google Scholar 

  40. Siegel M, Donner TH, Engel AK (2012) Spectral fingerprints of large-scale neuronal interactions. Nat Rev Neurosci 13:121–134. doi:10.1038/nrn3137

    CAS  PubMed  Google Scholar 

  41. Mothersill O, Kelly S, Rose EJ, Donohoe G (2012) The effects of psychosis risk variants on brain connectivity: a review. Front Psychiatry 3:18. doi:10.3389/fpsyt.2012.00018

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sprooten E, Lymer GKS, Muñoz Maniega S et al (2009) The relationship of anterior thalamic radiation integrity to psychosis risk associated neuregulin-1 variants. Mol Psychiatry 14(237–8):233. doi:10.1038/mp.2008.136

    Article  Google Scholar 

  43. Uhlhaas PJ, Singer W (2012) Neuronal dynamics and neuropsychiatric disorders: toward a translational paradigm for dysfunctional large-scale networks. Neuron 75:963–980. doi:10.1016/j.neuron.2012.09.004

    Article  CAS  PubMed  Google Scholar 

  44. Uhlhaas PJ, Haenschel C, Nikolić D, Singer W (2008) The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia. Schizophr Bull 34:927–943. doi:10.1093/schbul/sbn062

    Article  PubMed  PubMed Central  Google Scholar 

  45. Law AJ, Lipska BK, Weickert CS et al (2006) Neuregulin 1 transcripts are differentially expressed in schizophrenia and regulated by 5’ SNPs associated with the disease. Proc Natl Acad Sci U S A 103:6747–6752. doi:10.1073/pnas.0602002103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hahn C-G, Wang H-Y, Cho D-S et al (2006) Altered neuregulin 1–ErbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia. Nat Med 12:824–828. doi:10.1038/nm1418

    Article  CAS  PubMed  Google Scholar 

  47. Gu Z, Jiang Q, Fu AKY et al (2005) Regulation of NMDA receptors by neuregulin signaling in prefrontal cortex. J Neurosci 25:4974–4984. doi:10.1523/JNEUROSCI.1086-05.2005

    Article  CAS  PubMed  Google Scholar 

  48. Pitcher GM, Kalia LV, Ng D et al (2011) Schizophrenia susceptibility pathway neuregulin 1–ErbB4 suppresses Src upregulation of NMDA receptors. Nat Med 17:470–478. doi:10.1038/nm.2315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bjarnadottir M, Misner DL, Haverfield-Gross S et al (2007) Neuregulin1 (NRG1) signaling through Fyn modulates NMDA receptor phosphorylation: differential synaptic function in NRG1 ± knock-outs compared with wild-type mice. J Neurosci 27:4519–4529. doi:10.1523/JNEUROSCI.4314-06.2007

    Article  CAS  PubMed  Google Scholar 

  50. Woo RS, Li XM, Tao Y et al (2007) Neuregulin-1 enhances depolarization-induced GABA release. Neuron 54:599–610. doi:10.1016/j.neuron.2007.04.009

    Article  CAS  PubMed  Google Scholar 

  51. Ting AK, Chen Y, Wen L et al (2011) Neuregulin 1 promotes excitatory synapse development and function in GABAergic interneurons. J Neurosci 31:15–25. doi:10.1523/JNEUROSCI.2538-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lewis DA, Moghaddam B (2006) Cognitive dysfunction in schizophrenia: convergence of gamma-aminobutyric acid and glutamate alterations. Arch Neurol 63:1372–1376. doi:10.1001/archneur.63.10.1372

    Article  PubMed  Google Scholar 

  53. Bramon E, Dempster E, Frangou S et al (2008) Neuregulin-1 and the P300 waveform-A preliminary association study using a psychosis endophenotype. Schizophr Res 103:178–185. doi:10.1016/j.schres.2008.03.025

    Article  PubMed  Google Scholar 

  54. Uhlhaas PJ (2015) Neural dynamics in mental disorders. World Psychiatry 14:116–118. doi:10.1002/wps.20203

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The study we present has been supported by grants GRS A/14/932 and GRS A/15/1134 from the Gerencia Regional de Salud de Castilla y León (Spain), PI15/00299 from the Carlos III Institute of the Ministry of Health (Spain) and a predoctoral fellowship grant to Alba Lubeiro from Consejería de Educación- Junta de Castilla y León (Spain) and European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Molina.

Ethics declarations

Ethical standards

All participants provided written informed consent to participate in the study. It was approved by the ethical committee of the three hospitals involved in the study (University Hospitals of Alava, Salamanca and Valladolid) according to the Code of Ethics of the World Medical Association (Helsinki Declaration of 1975, as revised in 2008).

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lubeiro, A., Gomez-Pilar, J., Martín, O. et al. Variation at NRG1 genotype related to modulation of small-world properties of the functional cortical network. Eur Arch Psychiatry Clin Neurosci 267, 25–32 (2017). https://doi.org/10.1007/s00406-015-0659-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-015-0659-0

Keywords

Navigation