Skip to main content
Log in

Role of bulk and mass effects of reactions in reaction sintering processes

  • Theory and Processes of the Formation and Sintering of Powder Materials
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

Peculiarities of the fabrication of ceramic porous and dense composite materials based on compounds of the Si–C–O–N system with the participation of chemical reactions and the formation of new phases are discussed. An analysis of comparatively new technologies is attempted in terms developed in earlier studies on the reaction sintering of silicon nitride, carbide, and oxynitride. It is shown that the approach to reaction sintering that includes the selection of promising reaction systems allowing for the bulk effect of reactions accompanying material formation can be extended to the fabrication of porous and highly porous materials. In contrast to the fabrication of dense materials, when reaction systems with positive bulk effects are used, the reaction systems with negative bulk effects can be used in the fabrication of highly porous materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrievskii, R.A. and Spivak, I.I., Nitrid kremniya i materialy na ego osnove (Silicon Nitride and Silicon Nitride-Based Materials), Moscow: Metallurgiya, 1984.

    Google Scholar 

  2. Gnesin, G.G., Karbidokremnievye materialy (Silicon Carbide Materials), Moscow: Metallurgiya, 1977.

    Google Scholar 

  3. Guzman, I.Ya., Investigations in the Field of Reaction Sintering of Ceramics Based on Silicon Compounds in the Si–C–O–N System, Extended Abstract of Doctoral (Eng.) Dissertation, Moscow: Moscow Chim. Technol. Inst., 1979.

    Google Scholar 

  4. Shimanskii, A.F., Physical Chemistry of Composite and Ceramic Materials. Lection 13. Reaction Sintering. http://www.twirpx.com/file/736480/. Cited September 22, 2015.

    Google Scholar 

  5. Gilev, V.G., Reaction sintering with negative volume changes, Inorg. Mater., 2002, vol. 38, no. 3, pp. 296–301. doi 10.1023/A:1014791321098

    Article  Google Scholar 

  6. Antsiferov, V.N. and Gilev, V.G., Membrane porous materials from sialon, Refract. Ind. Ceram., 2001, vol. 42, nos. 1–2, pp. 57–63. doi 10.1023/A:1011301320402

    Article  Google Scholar 

  7. Gilev, V.G., Synthesis of micro- and nanoporous materials from silicon carbide in ultradisperse reaction systems, Russ. J. Appl. Chem., 2004, vol. 77, no. 4, pp. 531–537. doi 10.1023/B:RJAC.0000038661.14406.ac

    Article  Google Scholar 

  8. Suh, M.H., Kwon, W.-T., Kim, E.B., Kim, S.-R., Bae, S.Y., Choi, D.J., and Kim, Y., H2 permeable nanoporous SiC membrane for an IGCC application, J. Ceram. Process. Res., 2009, vol. 10, no. 3, pp. 359–363.

    Google Scholar 

  9. Zhao, H., Liu, Z., Yang, Y., Liu, X., Zhang, K., and Li, Z., Preparation and properties of porous silicon carbide ceramics through coat-mix and composite additives process, Trans. Nonfer. Met. Soc. China, 2011, vol. 21, no. 6, p. 1329. doi 10.1016/S1003-6326(11)60861-3

    Article  Google Scholar 

  10. Yang, H., Zhao, H., Li, Z., Zhang, K., Liu, X., and Tang, C., Microstructure evolution process of porous silicon carbide ceramics prepared through coat-mix method, Ceram. Int., 2012, vol. 38, no. 4, pp. 2213–2218. doi 10.1016/j.ceramint.2011.10.069

    Article  Google Scholar 

  11. Zhu, S., Ding, S., Xi, H., and Ruoding Wang, R., Lowtemperature fabrication of porous SiC ceramics by preceramic polymer reaction bonding, Mater. Lett., 2005, vol. 59, no. 5, pp. 595–597. doi 10.1016/j.matlet. 2004.11.003

    Article  Google Scholar 

  12. Zhu, S., Hong-An, Xi., Li, Q., and Wang, R., In situ growth of β-SiC nanowires in porous SiC ceramics, J. Am. Ceram. Soc., 2005, vol. 88, no. 9, pp. 2619–2621. doi 10.1111/j.1551-2916.2005.00460.x

    Article  Google Scholar 

  13. Zhu, S., Ding, S., Xi, H., Li, Q., and Wang, R., Preparation and characterization of SiC/cordierite composite porous ceramics, Ceram. Int., 2007, vol. 33, no. 1, pp. 115–118. doi 10.1016/j.ceramint.2005.07.006

    Article  Google Scholar 

  14. Shan, S.-Y., Yang, J.-F., and Gao, J.-Q., Porous silicon nitride ceramics prepared by reduction-nitridation of silica, J. Am. Ceram. Soc., 2005, vol. 88, no. 9, pp. 2594–2596. doi 10.1111/j.1551-2916.2005.00444.x

    Article  Google Scholar 

  15. Lu, Y., Yang, J., Lu, W., Liu, R., Qiao, G., and Bao, C., Porous silicon nitride ceramics fabricated by carbothermal reduction-reaction bonding, Mater. Manuf. Proc., 2011, vol. 26, no. 6, pp. 855–861. doi 10.1080/10426914.2010.515640

    Article  Google Scholar 

  16. Diaz, A., Hampshire, S., Yang, J.-F., Ohji, T., and Kanzaki, S., Comparison of mechanical properties of silicon nitrides with controlled porosities produced by different fabrication routes, J. Am. Ceram. Soc., 2005, vol. 88, no. 3, pp. 698–706. doi 10.1111/j.1551-2916.2005.00132.x

    Article  Google Scholar 

  17. Dechang Jia, Yingfeng Shao, Boyang Liu, and Yu Zhou, Characterization of porous silicon nitride/silicon oxynitride composite ceramics produced by sol infiltration, Mater. Chem. Phys., 2010, vol. 124, no. 1, pp. 97–101. doi 10.1016/j.matchemphys.2010.05.073

    Article  Google Scholar 

  18. Jiang, G.-P., Yang, J.-F., and Gao, J.-Q., Extrusion of porous silicon nitride using different binders, J. Ceram. Process. Res., 2010, vol. 11, no. 1, pp. 126–128.

    Google Scholar 

  19. Karunaratne, B.S.B. and Kim, H.-D., Fabrication of low cost shrinkage-free porous sialon ceramics, J. Ceram. Process. Res., 2009, vol. 10, no. 5, pp. 581–588.

    Google Scholar 

  20. Xu, X., Fu, R., Chen, K., and Ferreira, J.M.F., Costeffective fabrication of porous α-SiAlON bonded β-SiAlON ceramics, Mater. Lett., 2005, vol. 59, nos. 19–20, pp. 2601–2604. doi 10.1016/j.matlet.2005.03.048

    Article  Google Scholar 

  21. Yue, J., Dong, B., He, E., and Wang, H., Porous -sialon ceramic with closed packed macropore, Mater. Manuf. Proc., 2011, vol. 26, no. 9, pp. 1229–1232. doi 10.1080/10426914.2010.544828

    Article  Google Scholar 

  22. Shvedkov, E.L., Denisenko, E.T., and Kovenskii, I.I., Slovar’-spravochnik po poroshkovoi metallurgii (Dictionary Reference for Powder Metallurgy), Kiev: Naukova Dumka, 1982.

    Google Scholar 

  23. Gordeev, S.K., Three-dimensional carbon nanomaterials, Vopr. Materialoved., 2008, no. 2, pp. 163–174.

    Google Scholar 

  24. Geguzin, Ya.I., Fizika spekaniya (Physics of Sintering), Moscow: Nauka, 1984.

    Google Scholar 

  25. Guzman, I.Ya., Litvin, Yu.N., and Putrya, E.V., Oxidation kinetics of silicon nitride and silicon oxynitride ceramics, Ogneupory, 1974, no. 2, pp. 47–52.

    Google Scholar 

  26. Porz, F. and Thummler, F., Oxidation mechanism of porous silicon nitride, J. Mater. Sci., 1984, vol. 19, no. 4, pp. 1283–1285. doi 10.1007/BF01120040

    Article  Google Scholar 

  27. Andrievskii, R.A., Nanocrystalline high melting point compound-based materials, J. Mater. Sci., 1994, vol. 29, pp. 614–631. doi 10.1007/BF00445970

    Article  Google Scholar 

  28. Antsiferov, V.N., Gilev, V.G., and Rabinovich, A.I., Tribological properties of Al–SiC and Al–SiC–MnS composite material fabricated by infiltration of preforms based on nanoporous ceramics, Ogneupory Tekh. Keram., 2005, no. 3, pp. 2–6.

    Google Scholar 

  29. Ciora, R.J., Fayyaz, B., Liu, P.K.T., Suwanmethanond, V., Mallada, R., Sahimi, M., and Tsotsis, T.T., Preparation and reactive applications of nanoporous silicon carbide membranes, Chem. Eng. Sci., 2004, vol. 59, nos. 22–23, pp. 4957–4965. doi 10.1016/j.ces.2004.07.015

    Article  Google Scholar 

  30. Gordeev, S.K., Zhukov, S.G., Danchukova, L.V., and Ekstrom, T.S., Low-pressure fabrication of diamond–SiC–Si composites, Inorg. Mater., 2001, vol. 37, no. 6, pp. 579–583. doi 10.1023/A:1017560132134

    Article  Google Scholar 

  31. Gordeev, S.K., Zhukov, S.G., and Danchukova, L.V., New applications of wear resistant diamond composite materials, Instrum. Svit., 2003, no. 2 (18), pp. 4–6.

    Google Scholar 

  32. Ippolitov, N.G., Revisiting the reliability of the axial bearings, Neftegaz. Mashinostr., 2006, no. 12, p. 64.

    Google Scholar 

  33. Sheppard, C.M., MacKenzie, K.J.D., Barris, G.C., and Meinhold, R.H., A new silicothermal route to the formation of X-phase sialon: the reaction sequence in the presence and absence of Y2O3, J. Eur. Ceram. Soc., 1997, vol. 17, no. 5, pp. 667–673. doi 10.1016/S0955-2219(96)00121-5

    Article  Google Scholar 

  34. Ryan, M.J., The physical properties of sintered X-phase sialon prepared by silicothermal reaction bonding, J. Eur. Ceram. Soc., 1998, vol. 18, no. 3, pp. 185–191. doi 10.1016/S0955-2219(97)00126-X

    Article  Google Scholar 

  35. Jamshidi, A., Nourbakhsh, A.A., Jafari, M., and Naghibi, S., Combination of mechanical activation and silicothermal reduction and nitridation process to form X-sialon by using andalusite precursor, Mol. Cryst. Liq. Cryst., 2012, vol. 555, no. 1, pp. 112–120. doi 10.1080/15421406.2012.635082

    Article  Google Scholar 

  36. Rouquie, Y., Jones, M.I., Brown, I.W., and White, G.V., Influence of nitrogen overpressure on the nitridation, densification and formation of β-SiAlONs produced by silicothermal reduction, J. Eur. Ceram. Soc., 2013, vol. 33, no. 4, pp. 859–867. doi 10.1016/j.jeurceramsoc.2012.10.034

    Article  Google Scholar 

  37. Antsiferov, V.N. and Gilev, V.G., Reaction sintering of nontraditional systems, Abstracts of Papers, IV Vserossiiskaya konferentsiya. Fiziko-khimicheskie problemy sozdaniya novykh konstruktsionnykh keramicheskikh materialov (IV All-Russia Conf. on Physicochemical Developmental Problems of New Construction Ceramic Materials), Syktyvkar: 2002, pp. 12–13. http://chemi.komisc.ru/old/pdf/conf/conf1-2001-abscontent. pdf. Cited September 22, 2015.

    Google Scholar 

  38. Gilev, V.G., IR spectra and structure of Si–Al–O–N phases prepared by carbothermal reduction of kaolin in nitriding atmosphere, Inorg. Mater., 2001, vol. 37, no. 10, pp. 1041–1045. doi 10.1023/A:1012383211463

    Article  Google Scholar 

  39. Antsiferov, V.N., Gilyov, V.G., and Karmanov, V.I., IRspectra and phases structure of sialons, Vibr. Spectrosc., 2002, vol. 30, no. 2, pp. 169–173. doi 10.1016/S0924-2031(02)00022-X

    Article  Google Scholar 

  40. Gilev, V.G., Busovikova, T.M., and Loginov, M.G., Porous silicon carbide materials reaction-sintered under negative volume effects, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., 2003, no. 1, pp. 58–64.

    Google Scholar 

  41. Gordeev, S.K. and Vartanova, A.V., porosity changes in the process of obtaining of carbide material and during of making of them carbon adsorbents], Zh. Prikl. Khim., 1994, vol. 67, no. 7, pp. 1080–1084.

    Google Scholar 

  42. Larsson, P., Akdogan, G., and Gordeev, S., Wear of chromium carbide–copper composites with continuous phases, Tribol. Lett., 2004, vol. 16, nos. 1–2, pp. 59–64. doi 10.1023/B:TRIL.0000009715.31449.6e

    Article  Google Scholar 

  43. Poroshkovaya tekhnologiya samorasprostranyayushchegosya vysokotemperaturnogo sinteza materialov: uchebnoe posobie (Powder SHS Technology of Materials. Textbook), Antsiferov, V.N., Ed., Moscow: Mashinostroenie-1, 2007.

  44. Andriyanov, D.I., Amosov, A.P., and Samboruk, A.R., The use of the granulation in SHS technology to produce porous titanium carbide, Vestn. Samar. Gos. Tekh. Univ., Ser. Tekh. Nauki, 2014, no. 3 (43), pp. 73–80.

    Google Scholar 

  45. Andriyanov, D.I., Amosov, A.P., Latukhin, E.I., Samboruk, A.R., Bairikov, I.M., and Shcherbovskikh, A.E., SHS preparation of porous biocompatible materials based on titanium monoboride, Vestn. Samar. Gos. Tekh. Univ., Ser. Tekh. Nauki, 2011, no. 4 (32), pp. 96–101.

    Google Scholar 

  46. Verezub, O.N., Buza, G., Boross, P., Vero, B., and Kaptay, G., Surface metal matrix composite Fe–Ti–C/TiC layers produced by laser melt injection technology, Proc. Int. Conf. on Advanced Metallic Materials, Smolenice, Slovakia: 2003, pp. 297–300.

    Google Scholar 

  47. Gilev, V.G. and Morozov, E.A., Laser melt injection of ChN16D7GKh austenitic cast iron with titanium, Izv. Vyssh. Uchebn. Zaved. Poroshk. Metall. Funkts. Pokryt., 2015, no. 3, pp. 44–52.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Antsiferov.

Additional information

Original Russian Text © V.N. Antsiferov, V.G. Gilev, 2015, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Poroshkovaya Metallurgiya i Funktsional’nye Pokrytiya, 2015, No. 4, pp. 9–20.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antsiferov, V.N., Gilev, V.G. Role of bulk and mass effects of reactions in reaction sintering processes. Russ. J. Non-ferrous Metals 57, 715–722 (2016). https://doi.org/10.3103/S1067821216070026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821216070026

Keywords

Navigation