Skip to main content
Log in

Comparative evaluation of the transgene expression efficiency provided by the model genetic constructs of different structure

  • Experimental Works
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

Comparative evaluation of transgene expression efficiency provided by genetic constructs of different structures is an important stage in the development of new and optimization of existing expression vectors. However, there is no universal approach at present for correct comparison of expression efficiency of vectors of different structure. The goal of this work was to develop an experimental system for comparative evaluation of the expression efficiency provided by nonviral genetic vectors of various size and topology in human cell cultures. This system is based on the gene for the green fluorescence protein used as a reporter, flow cytometry methods for the evaluation of expression levels, and quantitative PCR for the adequate selection of transfection conditions. This system was tested with two model constructs: a linear DNA molecule and a circular plasmid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khan, K.H., Gene expression in mammalian cells and its applications, Adv. Pharm. Bull., 2013, vol. 3, no. 2, pp. 257–263.

    PubMed  PubMed Central  Google Scholar 

  2. Misra, S., Human gene therapy: A brief overview of the genetic revolution, J. Assoc. Physicians India, 2013, vol. 61, no. 2, pp. 127–133.

    PubMed  Google Scholar 

  3. Thomas, C.E., Ehrhardt, A., and Kay, M.A., Progress and problems with the use of viral vectors for gene therapy, Nat. Rev. Genet., 2003, vol. 4, no. 5, pp. 346–358.

    Article  CAS  PubMed  Google Scholar 

  4. Yin, H., Kanasty, R.L., Eltoukhy, A.A., Vegas, A.J., Dorkin, J.R., and Anderson, D.G., Non-viral vectors for gene-based therapy, Nat. Rev. Genet., 2014, vol. 15, no. 8, pp. 541–555.

    Article  CAS  PubMed  Google Scholar 

  5. Roth, C.M., Quantifying gene expression, Curr. Issues Mol. Biol., 2002, vol. 4, no. 3, pp. 93–100.

    CAS  PubMed  Google Scholar 

  6. Cohen, R.N., van der Aa, M.A., Macaraeg, N., Lee, A.P., and Szoka, F.C., Quantification of plasmid DNA copies in the nucleus after lipoplex and polyplex transfection, J. Controlled Release, 2009, vol. 135, no. 2, pp. 166–174.

    Article  CAS  Google Scholar 

  7. Tachibana, R., Harashima, H., Ide, N., Ukitsu, S., Ohta, Y., Suzuki, N., et al., Quantitative analysis of correlation between number of nuclear plasmids and gene expression activity after transfection with cationic liposomes, Pharm. Res., 2002, vol. 19, no. 4, pp. 377–381.

    Article  CAS  PubMed  Google Scholar 

  8. Gill, D.R., Pringle, I.A., and Hyde, S.C., Progress and prospects: The design and production of plasmid vectors, Gene Ther., 2009, vol. 16, no. 2, pp. 165–171.

    Article  CAS  PubMed  Google Scholar 

  9. Maucksch, C., Bohla, A., Hoffmann, F., Schleef, M., Aneja, M.K., Elfinger, M., et al., Transgene expression of transfected supercoiled plasmid DNA concatemers in mammalian cells, J. Gene Med., 2009, vol. 11, no. 5, pp. 444–453.

    Article  CAS  PubMed  Google Scholar 

  10. Schakowski, F., Gorschlüter, M., Buttgereit, P., Märten, A., Lilienfeld-Toal, M.V., Junghans, C., et al., Minimal size MIDGE vectors improve transgene expression in vivo, In Vivo, 2007, vol. 21, no. 1, pp. 17–23.

    CAS  PubMed  Google Scholar 

  11. Nafissi, N., Alqawlaq, S., Lee, E.A., Foldvari, M., Spagnuolo, P.A., and Slavcev, R.A., DNA ministrings: Highly safe and effective gene delivery vectors, Mol. Ther.–Nucleic Acids, 2014, vol. 3, p. e165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen, Z.Y., He, C.Y., Ehrhardt, A., and Kay, M.A., Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo, Mol. Ther., 2003, vol. 8, no. 3, pp. 495–500.

    Article  CAS  PubMed  Google Scholar 

  13. Kim, J.H., Kononenko, A., Erliandri, I., Kim, T.A., Nakano, M., Iida, Y., et al., Human artificial chromosome (HAC) vector with a conditional centromere for correction of genetic deficiencies in human cells, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, no. 50, pp. 20048–20053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Van Craenenbroeck, K., Vanhoenacker, P., and Haegeman, G., Episomal vectors for gene expression in mammalian cells, Eur. J. Biochem., 2000, vol. 267, no. 18, pp. 5665–5678.

    Article  PubMed  Google Scholar 

  15. Haase, R., Argyros, O., Wong, S.P., Harbottle, R.P., Lipps, H.J., Ogris, M., et al., PEPito: A significantly improved non-viral episomal expression vector for mammalian cells, BMC Biotechnol., 2010, vol. 10, p. 20.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gardlík, R., Pálffy, R., Hodosy, J., Lukács, J., Turna, J., and Celec, P., Vectors and delivery systems in gene therapy, Med. Sci. Monit., 2005, vol. 11, no. 4, pp. RA110–RA121.

    PubMed  Google Scholar 

  17. Hsu, C.Y. and Uludag, H., Effects of size and topology of DNA molecules on intracellular delivery with nonviral gene carriers, BMC Biotechnol., 2008, vol. 8, p. 23.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bertani, G., Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli, J. Bacteriol., 1951, vol. 62, no. 3, pp. 293–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sambrook, J. and Russell, D.W., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Laboratory Press, 2001.

    Google Scholar 

  20. Vierra, M., Garachtchenko, T., Gupta, V., Schmid, I., Hawley, T., Cimbro, R., et al., AcGFP and mCherry calibration beads for flow cytometry, J. Biomol. Tech., 2014, vol. 25 (Suppl.), p. S20.

    PubMed Central  Google Scholar 

  21. Carpentier, E., Paris, S., Kamen, A.A., and Durocher, Y., Limiting factors governing protein expression following polyethylenimine-mediated gene transfer in HEK293-EBNA1 cells, J. Biotechnol., 2007, vol. 128, no. 2, pp. 268–280.

    Article  CAS  PubMed  Google Scholar 

  22. Soboleski, M.R., Oaks, J., and Halford, W.P., Green fluorescent protein is a quantitative reporter of gene expression in individual eukaryotic cells, FASEB J., 2005, vol. 19, no. 3, pp. 440–442.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Pham, P.L., Perret, S., Cass, B., Carpentier, E., St-Laurent, G., Bisson, L., et al., Transient gene expression in HEK293 cells: Peptone addition posttransfection improves recombinant protein synthesis, Biotechnol. Bioeng., 2005, vol. 90, no. 3, pp. 332–344.

    Article  CAS  PubMed  Google Scholar 

  24. Kichler, A., Leborgne, C., and Danos, O., Dilution of reporter gene with stuffer DNA does not alter the transfection efficiency of polyethylenimines, J. Gene Med., 2005, vol. 7, no. 11, pp. 1459–1467.

    Article  CAS  PubMed  Google Scholar 

  25. Darquet, A.M., Cameron, B., Wils, P., Scherman, D., and Crouzet, J., A new DNA vehicle for nonviral gene delivery: Supercoiled minicircle, Gene Ther., 1997, vol. 4, no. 2, pp. 1341–1349.

    Article  CAS  PubMed  Google Scholar 

  26. Niopek, D., Benzinger, D., Roensch, J., Draebing, T., Wehler, P., Eils, R., et al., Engineering light-inducible nuclear localization signals for precise spatiotemporal control of protein dynamics in living cells, Nat. Commun., 2014, vol. 5, p. 4404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Andersen, J.B., Sternberg, C., Poulsen, L.K., Bjorn, S.P., Givskov, M., and Molin, S., New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria, Appl. Environ. Microbiol., 1998, vol. 64, no. 6, pp. 2240–2246.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Demidyuk.

Additional information

Original Russian Text © A.A. Komissarov, M.A. Karaseva, D.R. Safina, M.P. Roschina, O.P. Bednova, A.A. Kazakov, V.V. Demkin, I.V. Demidyuk, 2016, published in Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya, 2016, No. 3, pp. 115–120.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komissarov, A.A., Karaseva, M.A., Safina, D.R. et al. Comparative evaluation of the transgene expression efficiency provided by the model genetic constructs of different structure. Mol. Genet. Microbiol. Virol. 31, 156–162 (2016). https://doi.org/10.3103/S0891416816030058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416816030058

Keywords

Navigation